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Household Water Demand Estimation

To estimate the benefits of a potable water supply project, some idea of the parameters of
the demand function is needed to calculate a Marshallian consumer’s surplus welfare measure.
Often, given a baseline estimate of pre-project consumption and price, an elasticity estimate
can be used to reconstitute the underlying demand function and the consumer surplus integral
(see Powers and Valencia 1980), but the elasticity has to be obtained from the econometric
estimation of a demand relation. In an early review of twenty-six household water demand
elasticity estimates published before 1978, Hanke (1978) reported a wide range, the lowest
estimate being -0.01 and the highest -6.71. Gémez (1987) reports a narrower range from the
Bank's own work in Latin America and the Caribbean, with all estimates below -0.65.

Any estimate of the benefits of a reduction in the price of water due to a water supply project
arrived at using an elasticity-based calculation will be sensitive to the magnitude of that
elasticity. So will the benefits based on a method that uses estimated demand functions
directly. This paper discusses the relative merits of the statistical procedures that can be
used to obtain elasticity estimates or their underlying water demand functions.

General Demand Estimation Issues

A review of the water demand literature indicates that most problems encountered in demand
estimation and the techniques available to address them are derived from or have been dealt
with in the literature on electricity demand. In both cases, the issues discussed most
frequently have been:

1) Whether there is a simultaneous equations problem when estimating demand for water
with multipart rate schedules and, if there is one, what techniques should be used to
correct for it?

2) Whether average or marginal price is the relevant measure in estimating the demand
function.?

In addition to these problems, another issue that has historically not received as much
attention in the water demand literature is how to deal with sample selection bias in the face
of a rate schedule combining a fixed charge for consumption below the level where a block
rate tariff per unit consumed takes effect. Accounting for this phenomenon in statistical
estimation, possibly in combination with (1) and (2) above, essentially involves deciding how
to handle observations in the fixed charge category, where no unit consumption price is
observed.?

1 Another issue is whether the presence of declining block rates invalidates the estimation of individual
demand curves because of the possibility of multiple equilibria. With micro data on individuals facing
decreasing block rate tariffs, a continuous, unique demand schedule may not exist.

2 In the application to rural localities in Argentina (see below), estimation with this data is complicated
by the fact that a large number of customers fall in the fixed charge, minimum consumption block. It
would not be uncommon to expect this in localities serving relatively poor households having few
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The following two sections review each of these problems. The next section explains the
data setup, after which the results of estimating water demand functions using a sample of
685 families from 34 localities in rural Argentina taken in 1987 are presented and discussed.
The results obtained with the different estimation techniques designed to address the issues
identified above are compared, and some conclusions are drawn in a final section.

Simultaneity, Alternative Price Measures, and Multiple Equilibria

Simultaneity

Until recently, the water demand literature has paid limited attention to simultaneity problems.
It is worthwhile discussing this in some detail since the presence of, and the different
solutions to, simultaneity have direct implications for the method of demand estimation.

A necessary condition for unbiased and consistent parameter estimation under Ordinary Least
Squares (OLS) is that there be no correlation between the error term and any of the
explanatory variables. With multipart block rates this condition is not fulfilled, since prices are
endogenously determined by the consumer along with quantity demanded. Even though the
rate schedule (the supply function) is knowable a-priori by the investigator, the consumer
chooses the preferred price-quantity pair, implying that both price and quantity are
endogenous, not just quantity subject to a fixed price. Or, said otherwise, unless price is
infinitely elastic, a simultaneous equations problem theoretically must exist in the face of
block rate schedules even if the parameters of the latter are known a-priori (Westley 1984).
To illustrate this problem let us start with a simple demand function of the form:

Q = "+ $FY +$*P +u (1)
where: Q = guantity demanded

".$ = parameters

Y = income

P = price

u = random error term

If we were estimating the demand for domestic appliances by individual households, for
example, it is unlikely that purchases made by any household would affect the market price.
At this micro level, market prices are not influenced by (are independent of) the quantity
demanded by a single household, so the error term (u) in Eq. (1) is uncorrelated with P.

In contrast, the price of water chosen by any household will be correlated with the random
error term in Eq. (1) if the supplier's water tariff schedule relates the price charged to the
quantity a household purchases.

expensive water-using appliances. If marginal price for this group is arbitrarily set to zero in estimation
the slope of the demand curve will be biased. Removing these observations from the estimation sample
introduces sample selection bias.
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Suppose the relevant price for the consumer is the average price® of water, and the price
depends in stepwise block fashion on the amount consumed:

P = [(Pr + ry(ds- d) + 1i(Qiva- G) + ... +1(Q - 0;.1)))/Q (2)
where:

O¢ = quantity available for consumption at a fixed charge

Ps = fixed charge for water consumption at or below g;

r = block rate for block i (where j is the last consmption block)

o = block interval for block i.

P = average price

Q = total quantity consumed.

By substituting Eq. (1) in Eqg. (2) it is easy to see how the errors from Eq. (1) are correlated
with P. With three blocks, Eq. (2) can be written as:

P— P + r1(d:-0r) + r2(02-0y) - 1302 4o 3)

6 Q Q

Substituting the expression for Q from Eq.(1) in the denominator of (3) we have:

P— P + r1(d:-0r) + r2(02-0y) - 1302 4, 4)

0 "o+ Y+ P +u O

The error term (u) in the denominator of Eq. (4) is correlated with the average price, so bias
in all parameter estimates of § will be introduced if P is used as an independent variable to
estimate Eq. (1). The larger the error term (u) the smaller the average price, since the
consumption level will be in one of the blocks with lower marginal rates.

3 This is an intuitively appealing assumption. The paradigm of the ideal consumer who is fully aware of
all the rates in the water tariff schedule and exhibits optimizing behavior by equating marginal
willingness to pay to marginal supply price in a particular block ignores the cost of acquiring information
about tariff rates for a commodity that usually commands a small share of total household expenditure.
Although the approximating behavior embodied in the concept of average rather than marginal price
makes intuitive sense, it cannot be accepted with our Argentinean data set (see the Results section).
The water demand literature has debated this issue at length. For a recent and particularly good
explanation, see Nieswiadomy and Molina (1991).



Even if the quantity demanded is a function
of the marginal price of water instead of the
average price, the same simultaneity bias
problem can exist. In Figure 1 the real (and
unobserved) household demand schedule DO
intersects the supply schedule in the block
where the price is PO. With income
constant, suppose an exogenous random
event like a change in weather causes a
change in the quantity demanded. A
random increase in water consumption
would be observed as, say, Q2 and a
random decrease would be observed as Q1. Random
The error term (u) is negatively correlated __Emor . D1
with price (P), since a large and positive Random™ |
random error (u) reduces the observed P and Error

a large negative error increases the observed
P. The OLS assumption of independence
between the error term and the explanatory Q1 Q0 Q2
variables is violated because the water price Quantity

is not a constant--it depends on the quantity
chosen. As a consequence OLS estimation
will erroneously yield the parameters of D1
instead of DO. In other words, using OLS
with a declining block schedule wiill
underestimate or overestimate demand
elasticity depending on whether the supply schedule is steeper than the demand schedule.
With a rising block schedule the price response would be overestimated.

Price

PO

Figure 1. Error and Price Correlation.

In the face of simultaneity, instrumental variables (V) estimators such as two stage least
squares (2SLS) are preferable to ordinary least squares to produce consistent parameter
estimates. Curiously there is no consensus in the water demand literature on this issue.
While the presence of simultaneous equation bias and the need for instrumental variables
estimation could be resolved via a Hausman test on a case by case basis (Hausman 1978,
Nakamura and Nakamura 1981) empirical tests for simultaneity bias are uncommon in the
water demand literature.* The use of OLS has often been justified a-priori on the basis of
intuition, custom, or (to us) apparently specious reasoning, without bothering to test for the
validity of the OLS error assumptions.>

Another way to understand demand function identification is illustrated in Figure 2. There the
three demand schedules represent the demand of three families with identical characteristics
except for income (which rises from DO to D2). The decreasing block rate supply schedule

4 For an exception, see Nieswiadomy and Molina (1991) who reject the OLS assumption of price
exogeniety using the Hausman test.

5 A review of water demand analyses performed for IDB projects shows that OLS rather than IV
estimation has always been used. Chicone and Ramamurthy (1986) make an argument for OLS based
on the evidence from previous studies.
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represents the tariff regime in the locality (Sy). With this information it is not possible to
identify the demand function since the only data available are the three points of intersection
between the three separate demand schedules and the three block rates representing the
segments of the single public utility rate (supply) schedule. With the information in Figure 2,
OLS can only produce a linear approximation of the discontinuous step function for supply;
the parameters of the demand function are not identifiable.

In order to distinguish supply from demand we need some variation in the supply schedule that
can be accounted for by an independent variable that does not affect the demand schedule.
This condition is usually obtained by using
more than one rate schedule (as in Figure 3).
These can be constructed using time series
information on rates for a single community,
a cross-section of different communities, or
both. Price

An identifiable demand function is depicted %
in Figure 3. The several supply schedules S, Do

to S, clearly trace out the several demand
schedules.® i,

The problem of simultaneity in the presence \
of a block rate structure has been dealt with p2

in three ways. The first solution is to apply
two-stage least squares, as in Halvorsen
(1975) or Westley (1984). For example, in
a system like:

Quantity

Figure 2. Demand Not Identified

Q="+ 3F*Y + $*P +u ()

P = f(R(I,1),Q) (6)
where: R = rate schedule
| = locality
t = time

one can estimate the structural coefficients of (5) by regressing marginal price, P, against all
the independent variables of the system, and then using the prediction of P (IS) in equation (5).
An important requirement for the applicability of this method is to have a known set of rate
schedules with sufficient variation either in time period or by locality.’

8 This assumes that the price slope of the demand function is constant over time or across localities,
respectively. Otherwise the demand function cannot be identified.

7 Having sufficient variation may be more complicated than it seems. In our sample we had some
multicollinearity problems when constructing representations of the rate schedule using Westley's
method.
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The second way to solve the simultaneity problem is by
applying fixed point or iterative least squares methods
(see Martin et.al., 1984). These techniques are similar to
2SLS, and basically consist of estimating (5) and (6)
independently and using the predicted values of Q and P

- - - . 82
@ and P) to reestimate (5) and (6) in a second iteration. \ o
D

This process is repeated until the values of © and P
converge.® This technigue was not applied to our survey OESZ

Price

SO

S1
SO

because its statistical properties are less well known than
2SLS.

D1 S2

S1

The third solution actually argues that there is no real ESO

simultaneity if the problem is properly specified b2
(Blattenberger 1977, and Taylor, Blattenberger and Quantity

Rennhack 1981 and 1982). Itis argued that demand and
supply relations can be derived and estimated from a
reduced form. In this formulation the consumer makes a
decision based on the entire rate schedule; viz: Figure 3. Identified Demand

Q="+ &*Y + $*R(,1)] +u (7)

The schedule R(l,t) is exogenous to the amount purchased, and in a formulation like Eq. (7)
there is no apparent simultaneity problem. While the rate schedule can be represented in
many ways to estimate (7), its economic meaning is not entirely clear. Moreover, most
proxies that could represent the rate schedule will be correlated with the amount of water
consumed. In particular, the two proxies normally chosen are the average price of water
(Pavg) or the marginal price of water (Pmarg), which will be correlated to the quantity of
water consumed. A solution to this problem is to create an artificial approximation to the rate
schedule and derive average or marginal prices from it. Two approximations proposed by
Taylor, Blattenberger and Rennhack 1981 (TBR) in the case of electricity can be directly
applied to water demand estimation.

The first creates a linear approximation to the electricity bill (B;) and derives marginal prices
from it. In the case of TBR, who work with aggregate data, the first step was to take the
electricity bill in each locality at discrete consumption intervals and aggregate each interval
by state.® For example, if the first interval is from O to 100 Kwh/month, and there are 50
localities in each state, the first observation, B(;), would represent the weighted average total
cost of water in the 100 Kwh/month interval for the 50 localities. Assuming there are K
different intervals, the second step is to regress the B, "observations' against consumption,
or rather, against each particular interval limit (Q,).*° That is, if B(,) is the average bill for a
particular block they regress:

8 A technical presentation of the properties of this technique may be found in Dutta (1975).

® The weights in each interval given by the number of people in the locality that consume in that
particular interval with respect to the total number of people in the interval for the whole state.

10 Each interval can be defined at the lower level to avoid indeterminacy of the last block.



Bl =" + $Q,+u (8)

From (8) the estimate of $ is interpreted as the marginal price, while the intercept ** is
interpreted as the intramarginal cost.'*  Applying this method to the sample of rural
communities in Argentina we linearized the rate schedule of each locality around discrete
blocks common to all localities in the sample (from 1 to 65 m3/month in unitary increments).
In this way, the information from all localities can be used jointly for demand estimation while
each individual faces a marginal price that corresponds to his or her own locality.

The second instrument is similar to (8) above, except that instead of using an approximation
to the bill schedule, TBR use an approximation to the average price schedule. For example,
let:

b(k) = B()/Qx (9)

where b(k) represents the average price of interval k. The average price schedule can be
approximated by assuming that:

Other

oy
blk) = "Q (10) Goods

so, taking logarithms: [O]

In(b(k)) = In("") + $*In(Q,) + u (11)
where In(**) and $ represent the estimated
parameters of the logarithmic transformation

of the average price schedule, and u is an
error term.*?

o1
00

Water

Figure 4. Marginal Rate Change.

1 The significance of intramarginal cost will be explained below.

12 Of TBR's two instruments, in our empirical application we found the rate schedule approximation was
more satisfactory, but used neither in our final runs. See Section E for a discussion of the alternative



Choice of Variables

Two of the classic problems with multipart rate schedules are: how to take into account the
effect of changes in intramarginal rates, that is, changes in rates that do not correspond to
the current level of consumption; and whether marginal or average prices should be used to
estimate the demand function.

The first problem is neatly illustrated in Taylor's (1975) survey of electricity demand and can
be seen in Figures 4 and 5. The figures are plotted in commodity space, where "O"
represents a composite commodity (Other Goods) and Q™" represents water, with the usual
indifference curve-budget line representation. In both figures the rate schedule consists of a
fixed rate (Pf) represented by the horizontal line segment and two block rates (r1 and r2)
represented by the negatively sloped line segments. The original position of the rates is
represented by the solid linear line segments, and dashed lines represent the post change rate
schedule.

In Figure 4 the marginal rate, or the rate at which consumption is currently (originally)
obtained, is increased. Figure 4 shows how consumption declines from QO to Q1 due to the
price change. Figure 5 illustrates the effect of a change in the intramarginal rate, and shows
the effect on consumption (which goes from QO to Q1). The difference between the two
cases is that the first rate increase is at the
margin inducing the conventional income

and substitution effects obvious in Figure 4. Other
However, the second rate increase is Goods
intramarginal — the rate schedule shifts

inward leaving the marginal rate in the last |[C]
block unchanged, so the last segments of
both budget lines in Figure 5 are parallel.
This means that an intramarginal rate
increase or decrease only has an income
effect.

Awareness of this problem initially led to
several alternative ways to take into
account the size and changes in the
intramarginal premium. The consensus
reached appears to be that the approach
proposed by Nordin (1976), and further
explained by Griffin and Martin (1976), is
the correct way of handling the problem. o1
The solution is relatively simple; the effect
of the intramarginal rate structure can be
accounted for by creating a variable which
represents the difference between what the Water
consumer pays and what he would pay if all

00

Q1 bo

Figure 5. Intramarginal Rate Change

instruments.
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water demanded was charged at the marginal rate.

Since the effect of changes in intramarginal rates is essentially an income effect, it follows
that the coefficients of income and the intramarginal premium should be roughly the same in
absolute value but with opposite sign. In empirical applications, however, few cases report
similar coefficients for income and the intramarginal premium. In fact, the overwhelming
majority of reported results show coefficients that are significantly different.

This finding led to three types of reactions. Some have argued that water (or electricity) bills
are so small relative to income that consumers will not look into the structure or changes in
intramarginal rates. Consequently, consumers will not have a systematic response to changes
in intramarginal rates. Others argue that in most studies the intramarginal effect is not
estimated correctly, and this introduces a bias in the results. It is then concluded that
incorrect estimation explains why the theoretical prediction (equal coefficients) is not
empirically verified.*®* Another argument is that the intramarginal effect is so small that it is
lost in the random influences that affect consumer behavior. Hence, it is not surprising to find
that the value of both coefficients differs (Westley 1981). Finally, other authors note that
most demand estimates are based on aggregate data, so the prediction that the income and
intramarginal premium effect will have the same size is no longer necessarily valid (e.g.
Blattenberger 1977: 115-120).

Agnostic researchers who are skeptical about the premises of standard demand theory argue
that while a perfectly informed utility maximizing consumer should react to marginal, and not
average price, few consumers may have a sufficiently detailed knowledge of the rate schedule
or care to acquire it because of information costs. They may exhibit behavior which is not
in strict accordance with economic theory. Instead, consumers may use some average price
approximation as a guiding rule of thumb for consumption decisions for what is, after all, a
good that usually has a relatively small share in total family expenditure.

Demand estimation is a problem in applied economics, and theory can take us just so far. For
practitioners, whether the consumer reacts to the size of (or changes in) the intramarginal
premium eventually becomes an empirical question. A refreshing aspect of some of the water
demand literature is the notion that the potentially relevant variables for econometric
estimation ought to include things the consumer can easily understand and decide on.
Meaningful applied models have to sort out what is important from what is not. Water
consumers may react to average prices, marginal prices, or even just their total monthly water
bill, and data can be used to help resolve the issue.

In this vein, Oppaluch (1984) developed a model (elaborated by Chicoine and Ramamurthy
1986) that can be used to statistically test which price reaction alternative is supported by
the data. The starting point is a demand model like:

13 For instance, Schefter and David (1985) argue that most studies use average consumption to
calculate the intramarginal premium. This assumes that all consumers would be consuming at the block
corresponding to the average consumption, which is unlikely to be the case. The correct variable is the
average intramarginal premium rather than the intramarginal premium calculated at the average level of
consumption.
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Q="+ $P, + $P, + K{E P, - PIQUQ} + $4Y - TE,(, - P)Q (12)

where:

P, = prices of other goods

P, = marginal price of water at block n, where consumption occurs
P, = price of water at intramarginal block i<n

Q; = quantity of water at intramarginal block i

The second term in (8) represents the marginal price of water, or the price of water at the
block where consumption occurs. The third term is the difference between average price and
marginal price and the last term is income minus the intramarginal premium. The average
price for consumption up to block n is:

P =[E(P*Q)Q (13)

Average price in Eqg. (13) can also be expressed as:

n-1

[EP*Q] +P(Q-EQ)
Q

b (13.1)

which can be transformed into an expression that includes a marginal price term and an
average price term that is net of the marginal price:

n-1
P =P, + [E{P - P)QIQ (13.2)

which are the second and third terms in Eq. (12). Restricted and unrestricted estimation of
Eg. (12) allows the following statistical tests to be made (Chicoine and Ramamurthy 1986):

Test1 Test 2
Null Hypothesis HO: $=0 $ =8
Alternative Hypothesis H1: $00 $ 0%

Tests on Eq. (12) can yield the five different outcomes summarized in Table 1.



Table 1
Possible Test Results

Test Results Conclusion
1. $ =0 and $ * %, ====  Marginal Price Model
2. $ 0 and & =9 ====  Average Price Model
3. $ =0 and $=%,=0 ==== No Price Response Model
4. $ =0 and $=9%,; 50 ==== Indeterminate Model
5. $xx0 and $x $; ====  General "Decomposed" Price Model.

In other words, if the coefficient of $, is significantly different from zero (and presumably
negative) while $; is not significantly different than zero (i.e. test result 1) the marginal price
hypothesis cannot not be rejected. If both coefficients are insignificantly different from each
other (i.e test result 2), then the average price hypothesis cannot be rejected.

Properties of the Demand Function
Other

One of the_mos_t troublesome aspects Qf Goods 02, Q2 and 01, Q1 =
demand estimation when prices are set in 0] Multiple Equilibria
multipart block rates is that individual After Relative Price Change
demand functions may be discontinuous.
This problem was first highlighted by Taylor
(1975), and can be easily understood with
the following example. In Figure 6 we have
a tariff schedule with a fixed charge and
two unit tariff blocks. Initially, an
indifference curve corresponding to a single
household has tangency point at QO. If the
price of the second block increases the 01
consumer would be indifferent between Q1 00
and Q2, which means that the solution to
this problem is indeterminate. If we assume
that the choice is Q1, the demand curve
would have a "hole" corresponding to the
points between Q1 and Q2. If this is the .
case, it is not clear what sort of demand Q2 Q1 Qo0
curve can be estimated, or more
fundamentally, which (if any) meaningful
properties of demand systems would be
valid.

02

.
_______________

Water

Figure 6. Multiple Equilibria.
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In the applied literature, two explicit approaches have been proposed to circumvent this
problem. The first one argues that aggregate demand functions are not discontinuous to the
extent that different individuals have different tastes. By taking an average of a sufficiently
large number of individuals, indifference curves can be presumed to be located along the rate
schedules.

The main problem of this approach is that the aggregate demand curves estimated on the
basis of averages for groups of individuals no longer have the standard properties of individual
demand functions derived from consistent utility functions. The only properties that remain
after aggregation are homogeneity and budget exhaustion (Sonnenschein 1973).
Interpretation of results in terms of elasticities is therefore unclear. In addition, it is frequently
found that estimates based on averages tend to overstate demand price elasticities.**

The second solution to the problem of discontinuity is somewhat roundabout, and has been
proposed by Wade (1980). This approach consists of estimating demand indirectly through
estimation of the parameters of a Stone-Geary utility function. Once the parameters of the
utility function are identified, demand can be calculated using any appropriate optimization
algorithm. In this approach the existence of "holes" is still possible, although the quantities
of water demanded can always be estimated in a manner consistent with utility theory. In
this approach, the concept of price elasticity
is transformed into a weighted average of
elasticities on different blocks.

Price
In our Argentina application the data are Fixed Charge Block; Pmarg =0 | Unit Price Block
from a cross-section of communities, most
of which have increasing block rate
schedules. Therefore the kinked demand
problem is not serious, and does not affect
the estimation techniques for this b2
application, or the interpretation of results.
We therefore do not dwell on the issue
further.

>

D3

Sample Selection Bias

Sample selection bias may be important
when some sampled consumers are not in |,
the block rate schedule, but instead only pay
a fixed charge for quantities of water below
some statutory minimum that triggers block
rate pricing on a per unit consumed basis Q1 Q2=Qf Q3
(Wade 1980). (Chicoine and Ramamurthy Water Consumed

(1986) note the possibility of sample

Not Observed ° Observe

Figure 7. Sample Selection Bias.

14 See Bohi (1981: 10-12 and 149-151) for an interpretation of elasticities estimated from aggregate
data and bias in coefficients.
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selection bias, but do not correct for it.) In this case it appears on the surface that marginal
price can be set to zero and the fixed charge customers included in the estimation sample.
However, more properly, marginal price is not necessarily zero — indeed it is not observed at
all for a potentially large number of fixed charge customers with demands characterized by
schedule D2 in Figure 7. Their observed behavior contains no useful information on the
relationship between marginal willingness to pay (equals marginal price) for alternative
quantities of water below the trigger quantity in equilibrium. Figure 7 shows three
representative consumers who differ by level of income. Consumers with demand curves D1
and D2 are not in the rate schedule and do not pay an observed marginal price, while the
consumer with demand curve D3 can equate marginal willingness to pay with the unit price
by consuming at Q3.

If the fixed charge customers who are not in the block rate schedule are deleted from the
estimation sample and the demand relation is estimated using only the observations falling
within the block rate schedule where unit prices and their corresponding quantities are
observed, OLS or IV estimators may produce biased and inconsistent parameter estimates.
The simple reason is that the expected value of the error term in the demand equation for
observed consumers falling in the block rate schedule is likely to be non-zero, violating the
usual assumption.

Because sample selection bias is the most difficult issue to understand and deal with
econometrically, its origins and the methods that can be used to handle it are explained in
some detail. Only then is the additional complication of simultaneous equations in a sample
selection framework introduced, and a consistent technique for estimation of the parameters
of the structural water demand relation proposed.

Problems with Ordinary Least Squares, even in the Absence of Simultaneity

For simplicity, suppose we set aside the issue of simultaneity by assuming that rate schedules
offer water at a constant per-unit price (Pmarg) once some consumption threshold (Qf) has
been crossed, instead of being step functions beyond the threshold. Also assume two types
of consumers — households with a strong demand for water whose demand schedule is, for
reasons of income, wealth, or taste, located above (to the northeast of) the demand schedule
of a second category of users with a weaker demand for water. In this example, the high
income households pay the lump sum customer charge and a marginal rate as well because
their demand schedule pulls them into the region of the rate schedule. But low income
households pay only the lump sum charge and consume whatever the household requires
below the Qf threshold based on the role of exogenous socioeconomic variables other than
price, Pmarg.

The analyst only observes the price-quantity relationship for the first, wealthier class of
consumer falling in the block rate schedule. The less well-off customers array themselves
along the Pmarg = O axis below the Qf threshold. While their willingness to pay for the
quantities they are known to consume cannot be observed, there is a hypothetical marginal
price that would validate or call forth these quantities. Some of the families below Qf will use
water until its marginal value is truly zero, where their demand schedule cuts the horizontal
axis (D1 in the Figure). But other families may have demand schedules that are everywhere
below the prevailing rate schedule, and will consequently be clustered around the threshold
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Qf (shown as D2 in the Figure). With random error in the data, there is no way to easily
distinguish between these two cases.*® The true demand schedule for these poorer families
is unobserved because of the artifact of the two-part (lump sum cum unit rate) tariff
schedule.®

While the analyst would like to have price observations for the consumer group in the fixed
charge category below Qf, these are not observed. Pmarg could be coded as equal to zero
for each and every consumer in that category, but unfortunately zero has no economic
content or meaning for a subset of the observations below Qf. It is merely a convention that
indicates a missing value for Pmarg.

Of course, in estimation one could proceed following the above convention, replace the
unobserved prices with zero, and estimate the demand function over the full sample of
customers in both classes as if an unavailable marginal willingness to pay value was a true
zero. The consequence of so doing, given any set of exogenous variables, would be to pull
the estimated price intercept down from the true intercept and to decrease the estimated price
slope relative to the true slope. The result would be a false hybrid demand function.

Another approximation would be to construct a marginal price proxy for observations below
Qf by dividing the fixed charge paid by the quantity actually consumed. Again, just like
setting Pmarg to zero, there is no guarantee that this average price proxy will correspond
closely with the true marginal willingness to pay measure for price.

A final, and more reasonable approach would be to estimate the demand relation only from
observations falling in the rate schedule (i.,e. Q = Qf) discarding all fixed-charge-only
observations where marginal price is not a decision variable and is not observed.
Unfortunately, the parameters estimated from this censored sample by OLS may be
inconsistent. This arises because the expected value of the error in such an OLS regression
is non-zero, violating full ideal conditions of the classical normal linear regression model (see
Greene 1990). As discussed next, a correction technique exists to produce consistent
demand function parameter estimates.

The Heckman Approach: Sample Selection Bias Correction with no Simultaneous Equations

For the moment treating marginal price as exogenous, the full sample of water consumers can
be separated into those not in the rate schedule for whom marginal price is not observed and
those in the rate schedule paying an observed marginal price. Consider the following two
regime three-equations model (Heckman, 1979, Lee and Trost 1980, Mullahy 1986):

15 See Wade 1980 for a numerical example and an attempt to correct the problem using the Tobit
estimator.

16 For an innovative approach that can be used to augment the sample of public water utility customers
in the rate schedule with additional information on unconnected customers paying high prices to private
suppliers (tank trucks) and consuming low quantities relative to public utility customers, see Gomez
(1987). In essence, Gémez's method provides information on legitimate price/quantity pairs for families
like those in the public utility's fixed charge part of the schedule (e.g. segments of D1 and D2 in Fig. 7
above Pmarg=0) where such information is not observed. However, this method does not solve the
simultaneity bias or sample selection problems.
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Regime 1. Rate Schedule Demand. Q; $ Qf

Qi = Xi"$, + Pmarg $, + uy; iff Z($ u (14)
Regime 2: Fixed Charge Demand. Q; << Qf

Q. = Xy $; + Uy, iff Z(< vy, (15)
Regime 3: Selection/Latent Demand

Q5 =2Z(+ uz;; u =N(0,1) (16)

where Q; is the amount of water consumed, X,, X,, and Z; are row vectors of exogenous
explanatory variables, and Q"5 represents the difference between the unobserved quantity of
water desired and the minimum threshold Qf. If this difference is positive, the consumer
crosses the threshold into the rate schedule; if it is negative the consumer pays only a fixed
charge to consume an amount below Qf.

Here the quantity of water demanded if a user is in the rate schedule, Q,;, is greater than the
quantity demanded if the user pays no marginal price, Q,;, and belongs to the fixed charge
regime. Given the exogenous variables X;;, X, , Z; (and for now Pmarg;) the sample of rate
schedule customers is observed only if Q" is positive; that is if the unobserved intensity of
desire to consume water passes beyond the Qf; threshold defining the point of entry into the
rate schedule. Otherwise, the unobserved intensity of desire measure falls below Qf; and a
marginal price/quantity consumed equilibrium pair are not observed. Instead in the second
regime only fixed charge demand Q,; is observed.

In this model the latent measure Q”;; is unobserved. But since the variables it relates to (the
Zs) are, a discrete indicator can be constructed from the data by observing which regime each
observation belongs to:

I, =1 for Q°;; = 0 (Regime 1) (17)
I, = O otherwise (Regime 2)
In other words, usable price-quantity pairs are available to the analyst only when | = 1

because latent indicator exceeds the Qf defining the threshold of entry into the rate schedule.

If the error terms in the demand equation and the intensity equation are correlated with zero

means and covariance F;; Heckman considers the expectation E (Q,; *I; = 1) which can be
written:

EQu*l=1)=X;$+Pmarg$, + E (u; *I; = 1) (18)
where the notation (* I; = 1) refers to the sample selection rule, "conditional on being in the

rate schedule."

Consider least squares estimation using only those observations which qualify given the rule
in Eq. (16). If OLS is performed on (14), will consistent parameter estimates result? The
answer from the sample selection literature is in general, no, unless uy; is independent of uy;
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so the conditional expectation of u,; is zero and F,; equals zero. This is true because it can
be shown (Heckman 1979, Lee and Trost 1980, Olsen 1980, Mullahy 1986) that the
expected value of the error in the rate schedule demand equation is not zero:

E(uy *li = 1) = F.38 (19)

Here, F,; is the covariance between the error terms in the rate schedule demand function
(Regime 1) and the selection decision (Regime 3).*” The term 8is the ratio of the standard
normal probability density (N) evaluated at Z; to the standard normal distribution function (M,
or the probability that observation i belongs in Regime 1) evaluated at the same point (8 is
called the Inverse Mills Ratio). If an observation has a high probability of containing useful
data for Regime 1, its value for 8will be small and positive. Therefore, selectivity bias would
be unimportant if all the 8 were negligibly small and positive because the probability of sample
inclusion is high for all observations. Also, unless the covariance between the Regime 1
demand equation and the latent indicator equation is zero (i.e. F,;=0), OLS on Eq. (18) will
yield inconsistent parameter estimates because E(u,;* I, = 1) includes the disturbance but OLS
ignores it under the false assumption that E(u,;)=0.

Heckman's suggested procedure to estimate Eq. (18) consistently proceeds in two steps. In
the first step a Probit model is estimated on the binary indicator |; defined by Eqgs.(16) and
(17), producing consistent estimates of the ( parameter vector. Then for each observation
an estimate of lambda, 8 can be constructed and employed as a regressor in Eq. (18) above
using the data from the subsample in Regime 1. The second stage regression is:

Qu = Xy $ + Pmarg; $, + 8%, + V, (20)

where V; is an error term with mean zero and $; is an estimate of F,; = DF,,. Note that OLS
estimates on the Regime 1 sample which ignore sample selection would not include § as a
regressor.

Extension of the Sample Selection Model to the Simultaneous Equations Situation

Relaxing the assumption that the rate schedules (in a cross sectional sample of consumers in
different localities) are characterized by constant prices per unit of consumption introduces
the complication of block rate pricing. As explained earlier, this raises the distinct possibility
of simultaneous equations bias because marginal price (when it can be observed) is no longer
exogenous, but is chosen by each consumer simultaneously with consumption quantity (when
it can be observed). The solution to this additional complication is the extension of
instrumental variable methods to the sample-separation case generally characterized by two
simultaneous equations systems corresponding to the two different regimes and a selectivity
criterion determining the regime to which the observations belong (Lee, Maddala and Trost
1980).

7 Note that the standard deviation F,, cannot be estimated, so it is conventionally set to one. Therefore
the covariance term F,,; between F;; and F,; is conventionally expressed as DF;;F,; where D=corr[u,,u,].

Therefore, F,;=DF,;.
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Under these circumstances, and ignoring the fixed rate regime (because the endogenous price
and quantity variables corresponding to the demand function are only observed when |, = 1),
the simultaneity appears only in Regime 1. With simultaneity, and a cross-sectional sample,

Regime 1 is now expanded by adding a multi-location block rate supply-side equation to the
system along with the demand equation and the probit selection criterion function.

l. Regime 1
Demand
Qi = X4 $, + Pmarg $, + uy; (21)
Supply
Pmarg; = L [P][B] + uy (22)

1. Probit selection criterion

PROB(,=1)=1-F-ZQ0=1-M-ZQ = MZQ (23)

Here for any individual, i, X;; is a 1 x k row vector of exogenous explanatory variables as
before; $,, is a k x 1 column vector of demand parameters; $, is the parameter on price; L is
a 1 x j column vector of j localities; P is a j x m matrix which represents the price per cubic
meter of water paid in each location at m different consumption intervals; B is an m x 1
column vector which identifies the block chosen by the consumer; and Z; is a 1 X j row vector
of explanatory variables determining whether an observation belongs in Regime 1 (price and
quantity pairs observed) or not; and F () is the cumulative normal distribution function
evaluated at Z;( for the Probit, PROB indicating probability.

On the supply side, the entire across-community block rate structure can be written exactly
by the analyst with prior knowledge from the rate schedule step functions reporting B and P.
Nevertheless, the analyst does not know a-priori with any certainty which of the P rates will
be chosen by any individual, so the B variable is endogenous in this model — e.g. any B,, must
fall somewnhere in one of the blocks defined by B. So the exogenous variable on the supply
side is the location dummy variable represented by L.*8

To estimate the structural parameters $, , $, of the demand relation in this model the
instrumental variable approach outlined in Lee, Maddala, and Trost can be used. It is directly
analogous to two stage least squares with the addition of an estimate of the Mills Ratio 8
(constructed from the Probit equation) as an extra instrument.

The estimation steps are (Lee, Maddala, and Trost 1980):

8 There are j dummy variables, equal to the number of communities in the sample minus one if an
intercept is in the supply equation. Obviously if the sample included only one community and one time
period, the demand function could not be identified.
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1) Estimate the Probit criterion equation and construct an estimate of the Inverse Mills
Ratio 8 for each individual known to be in the rate schedule.

2) Estimate a reduced form equation for marginal price, Pmarg, using all exogenous
explanatory variables in the Regime 1 system (X,;, L) as instruments along with the 8
from step 1.

3) Predict the instrument for marginal price using the equation estimated in step 2.

4) Estimate the demand equation on the Regime 1 sample using the exogenous

explanatory variables X;;, the constructed instrument for Pmarg from Step 3, and the
constructed Inverse Mills Ratio 8 from Step 1. The former accounts for the
endogeneity of price and the latter for sample selection bias, just as before.

Model Specification and Data

Supply Variables

The first step in estimating water demand functions for Argentina was to find or create
exogenous variables that could represent supply schedules and circumvent simultaneity. For
this purpose we considered variables that could be used to estimate marginal prices and
subsequently use the prediction to estimate demand. Initially the following candidates were
considered:

a. Average Marginal Price: represented by the slope of a linear approximation to the total
revenue schedule of each locality, as proposed by TBR.

b. Marginal Rate Schedule (P): represented by the rate charged per cubic meter of water
in 16 consumption block intervals common to all localities, as proposed by Westley
(1984).

C. Locality Schedule (L): represented by dummy variables identifying each locality.

d. Block Schedule (B): represented by dummy variables identifying the block in which

each household is consuming in the respective rate schedule.

Examples of the last three types of variables are shown in the following tables. Table 2
shows hypothetical rate schedules for three localities, that is, the cost per cubic meter of
water at different consumption intervals. Using the information from the top part of Table 2,
rate schedules (P) can be calculated as shown in the lower part. Note that in this hypothetical
example each rate schedule is defined by four variables, each one corresponding to a
consumption interval. In the sample rural localities in Argentina there were sixteen common
intervals with at least one different marginal price each (sixteen rate schedule variables). Two
of them had to be discarded because they turned out to be linear combinations of other rate
schedules, so the final number of variables representing the rate schedule was fourteen.
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Table 2
Localities
Cost per M3 in:
Consumption Range San Juan Veronica Anguinan
0-100 M3*/month 0.6 0.3 0.0
101-200 M3*/month 0.6 0.6 0.0
201-300 M3*/month 1.1 0.9 1.0
More than 300 1.1 1.2 1.0
Rate Schedules RS1 RS2 RS3 RS4
San Juan 0.6 0.6 1.1 1.1
Veronica 0.3 0.6 0.9 1.2
Anguinan 0.0 0.0 1.0 1.0

An example of location schedules is shown in Table 3 below. The location schedule is a set
of dummy variables that represent locations. For example, all families in, say, San Juan,
would show LS1 = 1.0 and zero for all other L. This is also shown in the lower part of Table
4 (last two columns) which illustrates how block schedules are constructed for particular
households in a given locality. The block schedules identify the type of rate schedule faced
by each household and in what portion of the rate schedule they consume.

Table 3
Location Schedule

Name of Locality LS1 LS2 LS3
San Juan 1.0 0.0 0.0
Veronica 0.0 1.0 0.0
Anguinan 0.0 0.0 1.0

Table 4

Block Schedules for San Juan Families

Number Rate BS1 BS2 BS3 BS4 LS1 LS2
1 0.6 1 1 0 0 1 0
2 0.6 1 1 0 0 1 0
3 1.1 0 0 1 1 1 0
4 0.6 1 1 0 0 1 0
5 1.1 0 0 1 1 1 0
6 1.1 0 0 1 1 1 0




For example, the family identified as number 1 consumes in a block that ranges from O to 200
m3/month. In this block the price is $0.60 cents per m? and the family is located in locality
number 1. In contrast, family 3, which lives in the same location, is consuming at a block
ranging between 201 and more than 300 m3/month at a price of $1.1 per m®.

Of these four variables, Westley's Marginal Rate Schedule (P) and the Location Schedule (L)
were by far the best predictors for marginal price. All subsequent tests and IV regressions use
one or another of these two variables as alternative instruments.

Demand Variables

Apart from the usual variables that appear in any demand function (price and income), data
from the OEO survey contained information for several other indicators that could potentially
explain water consumption. These variables ranged from family attributes (number of
household members, number of adults, number of children, etc.), family assets (ownership
of land, house, radio, television, etc.), type of sewerage facilities, sources and uses of water,
water supply reliability, household water storage facilities, etc.

After carefully reviewing the information, some variables (and some individual surveys) were
discarded. With the reduced data set we tested the influence of different combinations of
variables. Some of the attributes turned out to be highly collinear (e.g. assets and income);
and many of the system attributes (e.g. sources and uses of water, type of sewerage system)
were too uniform across the sample to be of any value in terms of additional information.
These features of the sample reduced the number of usable variables to:

Marginal Price;

Intramarginal Premium;

Income;

Number of adults in the household (Adults);

Electricity Bill as a wealth proxy (Electricity);

Number of water faucets inside the house (Faucets); and
Average number of interruptions in service per month (Outages).

@rooo0oTp

Water Demand Equation Specification

The specifications tested combine three types of variables: marginal price, intramarginal
premium and income, and other variables (hnumber of adults, electricity bill, number of water
faucets, etc., as listed above).

The marginal price is in all cases the per unit cost of water at the level where the household
is consuming. If the household is consuming at the minimum, fixed charge level, the marginal
price is set to zero.

The intramarginal premium is generally defined in the literature as the difference between
what the consumer actually pays and what would have to be paid if all units consumed were
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charged at the marginal rate. In our application the premium was calculated in two ways: as
a lump-sum transfer, or as the difference between average and marginal prices.

In the first case the premium is a subtraction (or addition) to income. The theoretical
expectation is that the coefficients from this type of premium and household income will be
the same but with opposite sign. In this formulation, the lump-sum also includes the fixed
water charge since this cost is a deduction from income related to the act of consuming
water, but divorced from the decision of how much to consume at the margin. In some
applications, the intramarginal premium is directly deducted from income, which means that
the equality of coefficients for both variables is implicitly assumed.

The general model can therefore be estimated in two variants, with and without the constraint
on the equality of the coefficients of the intramarginal premium and income. That is:

Model I. Unconstrained, Marginal Price, Inequality of Income and Premium Effect
Q =" + $*Pmarg + $,*(Premium—+Fixed Charge) + $,*Y + $*[Other]
Model 1l. Constrained Income Effect Version of I.
Q="+ $*Pmarg + $,*(Y-Premium-Fixed Charge) + $*[Other]

A second formulation of the intramarginal premium, tailored to the Oppaluch test, is defined
on a per unit of water basis. In this case consistency with the derivation of the model
specification requires that we subtract from income all payments related to water
consumption (including the fixed charge). Thus the specification would be:

Model 1ll. Oppaluch’s Marginal and Average Price Model.
Q ="+ $*Pmarg + $,*Pr + $;*(Y-Premium) + $*[Other]
where Pr = Average Price - Marginal Price.

Each specification was estimated with two different samples: the full sample of 685 families,
and the subset sample of 279 families consuming above the minimum, fixed charge level.
Estimated demand functions for both samples using OLS and 2SLS are reported below for all
five model specifications.

The purpose of using different samples was to compare the effects of (erroneously) including
families consuming at the minimum level without correcting for the lack of an appropriate
marginal price measure. Although the marginal price for these families is set to zero, their
consumption level does not provide information on their price/quantity demanded choice
(unless the marginal utility of consuming water for public system customers at the observed
level is zero, or if the sample of public utility customers is augmented with privately supplied
low income customers following Gomez 1987). The relative size of the bias introduced by
using data from households in the fixed charge block is not known a-priori, so it is interesting
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to compare the results between both samples.’® Estimation using a smaller sample of
consumers in the unit price part of the rate schedule beyond the fixed charge block is a way
of correcting this problem. In contrast, the comparison between OLS and 2SLS results
illustrates the effects of simultaneous equations bias and sample selection bias.

Estimation Results

The following tables present the estimation results, which all maintain the hypothesis of a
linear demand function.?® We start with a comparison of OLS models using the full sample
of 685 observations, shown in Table 5. These OLS results are generally very poor. The signs
of the price and income coefficients are in most cases wrong or insignificantly different from
zero, which is evidence of the twin effects of simultaneous equation bias and the improper
coding of marginal prices in the fixed charge block as zero. In contrast, the signs of other
variables are always correct, often significant and do not change much compared to the ones
estimated using 2SLS.%*

1% Our sample only includes public utility customers, so the implications of Gomez's sample
augmentation approach could not be empirically explored.

20 Other functional forms were explored, but our conclusions about simultaneity and sample selection
bias remained robust across functional specification.

2! The only exception for signs is with Outages in the 2SLS results.



Table 5
OLS Full Sample Results
(Absolute Value of "t" Statistic in Parentheses)

Model | 1l 1]

Constant 12,588.8 9,441.0 9,388.4
(13.5) (11.49) (11.49)

Marginal Price -590.3 4,370.0 6,179.7
(0.5) (5.9) (4.5)

Premium -498.9 - 20,093.6
(6.5) (1.5)

Income -0.1 -4 -0.4
(0.6) (1.6) (1.8)

Adults 257.6 387.0 379.5
(1.5) (2.2) (2.1)

Faucets 306.2 352.0 357.0
(2.6) (2.9) (2.9)

Outages -729.0 -165.0 -92.9
1.2) (0.3) (0.2)

Electricity 68.9 61.3 60.5
(5.8) (1.6) 4.9)
R? 0.18 0.12 0.12

F 21.5 16.9 14.9

Note: Marginal price in fixed charge block coded as zero.

Results using 2SLS on the Full Sample with two different instruments (P or L) for the rate
schedule are shown in Tables 6 and 7.

Marginal prices show correct coefficients (except in Model Il with the P instrument) and are
generally significantly different from zero. The elasticity values for prices, premium and
income are low, which is a result consistent with the bias introduced by including families in
the minimum consumption category. For example, the highest price elasticity value is only
-0.12, the highest elasticity of the intramarginal premium is -0.08 (Table 7, Model I) and
income coefficients have correct results only in one case (Model I).

As mentioned above, the values of the coefficients for all other variables (with the exception
of service interruptions, Outages) are not significantly affected when estimated with 2SLS.
The constant term in both cases roughly corresponds to a consumption level of about 330
liters per connection per day. This is reasonable since the average household size is between
3 and 4 people and the average per capita consumption level in the sample is close to 100
liters per persons per day. For the same reason, the coefficient on the number of adults in the
household (Adults) is also rather low, because it implies that adding or taking away one adult
from the household will change daily consumption by about 10 to 20 liters per day.
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Table 6
2SLS Full Sample Results With Location Dummy Variable Instrument

(Absolute Value of "t" Statistic in Parentheses)

Model | 1l 1]
Constant 11,720.0 9,833.7 10,013.5
(11.1) (11.4) (11.0)
Marginal Price -4,690.0 -1,977.0 -8,115.0
(3.2) @.7) (1.5)
Premium -302.0 - -6,789.0
(3.0) - 1.2)
Income .0 -0.05 -0.05
(0.0) (0.2) (0.02
Adults 303.0 381.1 405.9
@.7) (2.1) (2.1)
Faucets 383.0 414.3 404.7
(3.1) (3.3) (3.1)
Outages -225.3 129.0 -99.7
(0.0) (0.2) (0.2)
Electricity 86.4 82.8 86.5
(6.7) (6.3) (6.2)
Elasticities:
Ep -0.08 -0.03 -0.13
Epr -0.07 - -0.08
Ey n.s. n.s. n.s.

n.s.= Result is not significant.
Note: Marginal price in fixed charge block coded as zero.

It is difficult to judge the reasonableness of the size of other coefficients. The coefficient on
Faucets indicates a relationship between the number of inside faucets and water consumption
similar to the effect of the number of adults on monthly water consumption. Frequency of
service interruptions (Outages) in most cases has the anticipated negative sign in OLS and the
wrong sign in 2SLS, but is generally insignificant using either estimator. Finally, the value of
the electricity bill (as a proxy for wealth) indicates a positive relationship between wealth and
water consumption, with an average elasticity of about 0.15. In terms of price and income
coefficients the main change from OLS to 2SLS is that the price, premium and income
coefficients take on the theoretically expected signs, even though the elasticities are low.

Oppaluch’s test (Model V) is inconclusive. In OLS the price and premium coefficients are both
significant, and significantly different from each other, but have the wrong sign. In 2SLS both
parameter estimates are insignificantly different from zero at the 95% level, implying no price
response. An important implication of these results is that if we estimate with the full sample
of observations, OLS will not yield correct results, while 2SLS yields low but theoretically
consistent elasticities for the models maintaining a marginal price hypothesis.
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Table 7
2SLS on Full Sample With Rate Block Dummy Variable Instrument

(Absolute Value of "t" Statistic in Parentheses)

Model | 1l 1]
Constant 12,164.0 9,940.0 9,817.1
(10.5) (11.1) (10.8)
Marginal Price -7,146.0 -3,697.0 348.8
(4.0) 2.7) (0.05
Premium -353.0 - 4,363.8
(2.9) - (0.7)
Income .09 -0.05 -0.16
(0.4) (0.2) (0.6)
Adults 288.2 379.6 364.6
(1.6) (2.0) (1.9)
Faucets 397.6 431.0 437.6
(3.1) (3.3) (3.4)
Outages -192.7 209.0 348.0
(0.3) (0.3) (0.5)
Electricity 93.8 88.6 86.1
(6.9) (6.5) (6.1)
Elasticities:
Ep -0.12 -0.06 n.s.
Epr -0.08 - n.s.
Ey n.s. n.s. n.s.

n.s.= Result is not significant.
Note: Marginal price in fixed charge block coded as zero.

Table 8 presents the results of applying OLS and 2SLS to the subsample of 279 families
consuming above the minimum, fixed charge consumption level instead of the entire sample
of 685 households. The results are interesting. First, in contrast to the results using the full
sample, the price coefficients (and corresponding elasticities) estimated with OLS using the
restricted sample are not too different from the ones calculated using 2SLS. Second,
elasticities and price coefficients are much higher in this sample. The price elasticity ranges
between -0.2 and -0.4 (compared to -0.04 to -0.12 with the full sample). Third, the size and
significance of the premium coefficients is erratic. The results of the Oppaluch test (model
[l) are particularly inconclusive since the price and premium parameters are significant in OLS
(price with the wrong sign) and insignificant in 2SLS. Fourth, income coefficients are
significant and have the correct sign in model I, although the elasticity value (0.02) still
appears to be low.

The most important general result of this group of regressions is that the effects of sample
selection bias have a greater impact than the simultaneity problems in this particular case.
In other words, within the subsample of consumers that are above the minimum level, the
effects of simultaneity are very small. This is most likely because the distribution around the
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different rate schedules is more concentrated in one or two blocks per community, such that
in several cases the supply schedule is almost perfectly elastic.

Table 8
Small Sample Results

(Absolute Value of "t" Statistic in Parentheses)

Model 1l Il
OLS 2SLS** OLS 2SLS** OLS 2SLS*
Constant 24,508.0 23,927.0 19,830.0 20,104.6 19,495.9 20,087.1
(21.8) (21.2) (15.8) (16.0) (17.5) (16.5)
Marginal price -14,262.0 -13,629.0 -8,077.0 -8,648.0 14,804.0 -5,459.0
(22.7) (11.7) (6.9) (7.1) (5.2) 1.2)
Premium -942.4 -789.9 - - 25,641.5 3,646.8
(11.0) (9.0) - - (8.6) 0.7)
Income .39 .33 -.03 -0.01 -0.63 -0.1
(1.8) (1.5) (0.1) (0.0) 2.7) (0.4)
Adults 3.3 51.0 260.0 270.0 249.3 269.8
(0.0) (0.2) (1.0) (1.1) (1.1) (1.1)
Faucets 92.4 126.0 301.0 300.5 225.1 290.3
0.7) (1.0) (2.0) (2.0) @.7) (2.0)
Outages -1,514.9 -1,338.0 -550.0 -518.0 680.8 -340.6
(2.0) @.7) (0.6) (0.6) (0.8) (0.4)
Electricity 48.8 49.2 49.6 50.1 28.0 47.1
(4.4) (4.4) 3.7) (3.8) (2.3) (3.5)
Elasticities
Ep -0.45 -0.43 -0.26 -0.27 0.47 -0.17
Epr 0.04 0.03 - - -0.62 -0.09
Ey 0.02 0.02 -0.0 -0.0 -0.03 n.s.
R2 0.44 0.20 0.20
30.90 11.00 9.60

** Using the Location Schedule dummy variable as an instrument.

The presence of simultaneous relationships was also tested with the Reset and Hausman
tests. The former is a general specification which may capture problems other than
simultaneity while the latter is specifically testing for simultaneity. The results in Table 9
generally support the view that the presence of simultaneity cannot be rejected. Most of the
Reset tests indicate the presence of specification problems while all but two of the Hausman
tests confirm that simultaneity cannot be rejected.??

22 In Table 9, only the unconstrained models (I and Il) using marginal price as the consumer's decision

variable can rightly be tested since the introduction of incorrect parameter restrictions as maintained
hypotheses would distort the test.
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Table 9

Tests for the Presence of Simultaneity: Small Sample

Using the Location Dummy Variable Instrument

1. Without Sample Selection Correction (Without Lambda)

Model [ Critical Value
Reset (2) 12.86 3.84
Reset (3) 11.85 3.00
Reset (4) 8.04 2.60
Hausman 34.57 15.50

2. With Sample Selection Correction (With Lambda)

Reset (2)
Reset (3)
Reset (4)

Hausman

14.67 3.84
12.02 3.00

8.15 2.60
33.93 15.50

Il. Using the Rate Schedule Dummy Variable Instrument

1. Without Sample Selection Correction (Without Lambda)

Model

Critical Value

Reset (2)
Reset (3)
Reset (4)

Hausman

12.86 3.84
11.85 3.00
8.04 2.60
1.06 15.50

2. With Sample Selection Correction (With Lambda)

Reset (2)
Reset (3)
Reset (4)

Hausman

14.63 3.84
12.01 3.00
8.15 2.60
4.34 15.50

Note:

Numbers in parenthesis after Reset indicate powers

of predicted independent variable used in test.

The results of Lee, Maddala and Trost's adaptation of Heckman's estimation procedure to the

simultaneous equations case are presented in Table 10.
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Table 10
Simultaneity and Selectivity Correction: Small Sample with
Heckman's Two-Step Estimation and Instrumental Variables

(Absolute Value of "t" Statistic in Parentheses)

Model | 1l 1]
Constant 24,038.0 19,970.0 19,442.7
(18.6) (14.8) (14.9)
Marginal Price -13,611.0 -8,981.0 -6,586.0
(11.0) (7.4) 1.4)
Premium 796.0 - 2,693.0
(9.0) - (0.5)
Income 0.33 -.03 -0.10
(1.5) (0.2) (0.5)
Adults 54.7 266.0 227.8
(0.2) (1.0) (1.0)
Faucets 121.0 352.0 318.0
(0.8) (2.4) (2.1)
Outages -133.9 -554.0 -426.1
(1.6) (0.6) (0.5)
Electricity 48.6 55.9 52.2
(4.0) 4.1) (3.7)
Lambda -194.0 1,500.0 1,431.1
(1.3) (1.9) @.7)
Elasticities:
Ep -0.43 -.28 -0.10
Epr +0.03 - n.s.
Ey 0.02 n.s. n.s.

n.s.= Result is not significant.

The results in Table 10 are similar to the results obtained with 2SLS in the small sample.?®
Price elasticities range from -0.10 to -0.43; premium elasticities range from -0.05 to 0.03; and
income elasticities range from -0.01 to 0.02. All three models estimated yield theoretically
consistent elasticities for price. However, Model | yields positive premium elasticities (which
is incorrect), while models Il and 11l yield insignificant (and negative) income elasticities.

In sum, better results were obtained using the subsample of individuals above the minimum
consumption under both OLS and 2SLS. Instrumental variables estimation with a sample
selection correction on this truncated sample is preferable on a-priori grounds, but did not

2% For brevity, the first stage Probit estimation results used to produce observation-specific values of the
Mills Ratio are not presented. The independent variables included in the Probit step were location
dummies, the proportion of income allocated to the fixed water charge, the upper limit of the fixed
charge block (in m® per month), the number of adults in the household, the average hours of system
outage per month, and the monthly electricity bill, a proxy for wealth. Marginal prices were not
significant, and were not included.
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introduce startling changes in the parameter estimates. The advantage of ignoring
simultaneity and sample selection bias by OLS estimation on the truncated sample is
simplicity. Its disadvantage is that these problems may be non-trivial in some applications.
Also, in many rural areas a large percentage of the population is in the minimum consumption
level, and OLS (or 2SLS) estimation on the truncated sample discards information on them by
only using families above that level in estimation. The Lee, Maddala, and Trost estimation
method makes better use of all the sample information.

Conclusions

The results of estimating water demand functions from a sample of households connected to
public water systems in rural communities in Argentina yield some useful answers to the
questions posed at the beginning of this paper.

Simultaneous Equation Bias Exists

It is clear, both from theory and our Hausman tests, that there is a simultaneous equation bias
when using OLS in the face of block-varying tariff schedules. The impact of this bias is
stronger when the entire sample spanning the fixed and unit price tariff blocks is used than
it is when estimating with the smaller sample that excludes observations in the fixed charge
group. But even in the latter case simultaneous equation bias could not be rejected.
Therefore, at a minimum, any estimation of water demand should explore an instrumental
variables approach (e.g. 2SLS) to try to produce consistent estimates of the price coefficients.

Using OLS on a sample of observations from a single locality and time period that contains
both public utility customers and unconnected customers supplied through low volume, higher
cost alternatives remedies the problem of unobserved information about low income
customers in the fixed charge part of the utility's rate schedule.?* But, it does not solve the
simultaneous equation bias problem. As long as we are confined to a single locality and time
period, the use of OLS potentially is as likely to identify a demand as a supply curve, or with
luck, some hybrid mixture of both that has a negative price parameter.

Average Price May not be Relevant

With respect to the choice of average versus marginal prices, the results of the Oppaluch
specification are not decisive. But, the results in Tables 8 and 10 suggest that marginal, not
average, price is the relevant variable, since marginal price is significant at the 90% level
using the critical value for a one-tailed test that does not admit the possibility of a positive
marginal price response. The intramarginal premium is in most cases not significantly different
from zero. Thus, the average price hypothesis cannot be accepted with our data set.

24 This method is used in Gomez (1987).



Sample Selection Bias May Matter

Sample selection bias may be important, as suggested by the borderline statistical significance
of the parameter attached to the Inverse Mills Ratio (the Lambda parameter) in Models Il and
Il of Table 10. Again, however, the results are not clear-cut. Several observations are in
order here.

The price coefficients obtained using the Lee, Maddala and Trost estimation method reported
in Table 10 do not appear too dissimilar from those obtained using 2SLS in the small sample.
Since the Inverse Mills Ratio was estimated independent of prices, the conditional price
derivative of consumption (i.e. the price derivative of those within the block rate schedule) is
unaffected by its presence in the conditional demand function. But, the estimate of the
expected value of water consumed, conditional on being in the rate schedule, is a function of
the Inverse Mills Ratio, which can be thought of as an adjustment to the intercept that
depends on the household's characteristics.?®

Depending on the data, the sample selection adjustment could have an impact on the
calculation of benefits accruing from a supply price reduction across consumers, since the
position of the demand schedule is affected by the value of the Inverse Mills Ratio and the
parameter estimate attached to it. In our rate schedule sub-sample, the average value of the
Inverse Mills Ratio is 0.5, so the adjustment adds up to about 0.5*1,500 = 750 cubic meters
per month to the constant term in Model Il. So corrected, these augmented intercepts are
close to the constant terms estimated from 2SLS on the small sample where marginal price
can be observed. The hypothetical building of demand schedules for households not in the
rate schedule "as if"" they faced marginal prices and no fixed charge could bring about a wider
disparity between the two approaches.

There are other reasons to prefer Lee, Maddala and Trost's instrumental variables version of
the Heckman two-step procedure. It has the advantage of using the information more
effectively than 2SLS on the small truncated sample. Finally, the parameter estimates of the
2SLS estimator which ignores incidental truncation introduced by the fixed charge group (i.e.
doing 2SLS on the unit block rate customers only) are, at least in theory, inconsistent.

What To Do?

In general, to identify the demand function, data on more than one locality in a single time
period or more than one time period at a single locality are needed. Individuals in the public
utility"s fixed charge category should not be included in the estimation sample, since their
marginal willingness to pay cannot be accurately observed, and is not necessarily zero.

25 The expected value of any individual's quantity demanded ¢, given the values of its row vector of
regressors x;, and conditional on being in the rate schedule (where 3 is a row vector of parameter
estimates on variables other than § is:

Elg Ix, a; $ 0] = x'B + B8



- 31 -

For the estimation sample it makes sense to augment the truncated sample of public utility
customers in the unit price blocks of the rate schedule with information on unconnected
households using private (or self) supply sources. Preferably, their characteristics (particularly
income, assets, and water consumption levels) should be similar to those of the families in the
public utility's fixed charge category that have to be dropped from the demand estimation
sample. In this way, legitimate high price/low quantity observations can be obtained. But,
this group of unconnected customers is akin to a separate locality that, at least potentially,
faces unit prices that depend on consumption quantity, so the potential for simultaneous
equations bias in such an augmented sample combining connected block rate households and
unconnected households still exists.

The likely severity of the simultaneity and sample selection problems can be assessed by a
close look at the data. For example, if a small proportion of the sample falls into the fixed
charge regime (or a fixed charge regime does not exist in the rate structures observed across
space or time) the sample selection correction may be unnecessary. If an overwhelming
majority of the subsample in the rate schedule falls into the first unit price block, or the place
(or time) varying schedules all have constant rates rather than block-declining or block-
increasing rates, then for all practical purposes, simultaneity is a non-issue. If both of these
conditions are satisfied by the data, OLS may be acceptable.

If there is a fixed charge regime with constant unit pricing rather than block pricing,
simultaneity is no problem, but sample selection bias might be. Estimation on the truncated
sample should attempt to account for it, either using Heckman's correction method, or an
approximation using an adjustment to OLS (e.g. see Greene 1983, Olsen 1980).%¢

If there is no fixed charge regime, but the observations are arrayed across a wide range of
different block-defined unit prices, an instrumental variables estimator like 2SLS would be
preferable. The need for it can be established via a Hausman test.

If it appears that simultaneity and sample selection both are present, at a minimum we
suggest that the analyst should disregard the fixed charge customers and use an instrumental
variables estimator on the in-block household observations.

26 Assume we discard all the information pertaining to the subsample of observations in the fixed charge
regime (Regime 2) and retain only those in the rate regime (Regime 1), making the sample truncated
rather than censored. Also assume that the observed marginal price Pmarg is constant rather than
defined as an increasing or decreasing block rate, so simultaneity is not an issue. Suppose some
regressors appear in the sample selection equation (Equation 16 above) but not in the demand equation
(Equation 14). If these variables are included in the estimation of Equation 18 on the truncated sample,
according to Greene 1983, consistent parameter estimates will be obtained for variables which belong
only in the demand equation and not in the selection equation. Variables shared by both equations will
still have inconsistent parameter estimates. If the demand equation and the selection equation do not
have any variables in common, inclusion of the variables from the selection equation in the demand
equation estimation will produce consistent parameter estimates for the latter. This result from Greene
(1983) is linked to Heckman's intuition (1976) that the effect of sample selection is that variables that
do not belong in the regression appear to be statistically significant in equations fit on selected samples.
It is of little help, because a-priori knowledge about which variables belong in each stage of the decision
process is usually not available.
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In sum, the characteristics of the particular case dictate the degree of econometric
sophistication required for the estimation of plausible household water demand functions.
Nevertheless, potential estimation problems should not be ignored altogether by the
indiscriminate use of simple OLS when its assumptions do not apply.
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