
Agricultural Greenhouse 
Gas Emissions in Latin 
America and the 
Caribbean
Current Situation, Future 
Trends and One Policy 
Experiment

Stephen Vosti 
Siwa Msangi 
Eirivelthon Lima 
Ricardo Quiroga 
Miroslav Batka 
Chad Zanocco

Inter-American 
Development Bank

Infrastructure and 
Environment

DISCUSSION PAPER

No. IDB-DP-167

January 2011



Agricultural Greenhouse Gas 
Emissions in Latin America and the 

Caribbean

Current Situation, Future Trends and One Policy 
Experiment

Stephen Vosti 
Siwa Msangi 

Eirivelthon Lima 
Ricardo Quiroga 
Miroslav Batka 
Chad Zanocco

Inter-American Development Bank
2011



http://www.iadb.org 
  
The Inter-American Development Bank Discussion Papers and Presentations are documents prepared by 
both Bank and non-Bank personnel as supporting materials for events and are often produced on an 
expedited publication schedule without formal editing or review.  The information and opinions presented 
in these publications are entirely those of the author(s), and no endorsement by the Inter-American 
Development Bank, its Board of Executive Directors, or the countries they represent is expressed or 
implied. 
  
This paper may be freely reproduced.



1 
 

Table of Contents 

List of Tables .................................................................................................................................. 2 

List of Figures ................................................................................................................................. 2 

1.  Executive Summary ............................................................................................................... 3 

2.  Introduction ............................................................................................................................ 6 

3.  Choice of Predictive Models to Address Agriculture GHG Issues ........................................ 9 

3.1 Model Choice .................................................................................................................... 9 

3.2 The IFPRI IMPACT Model ............................................................................................. 10 

4.  Establishing Agriculture-GHG Links for the IMPACT model ............................................ 12 

4.1 Estimating GHG Emissions Associated with Area Expansion in Agriculture in LAC ... 13 

4.2 Greenhouse Gas Emissions Associated with Annual and Perennial Crop Production 
Activities ................................................................................................................................ 18 

4.3 Estimating GHG Emissions Associated with Livestock Production in LAC .................. 22 

5.  Results of Model Simulations .............................................................................................. 25 

5.1 IMPACT Model’s Baseline Simulation .......................................................................... 25 

5.2 Using the IMPACT Model to Assess the Effects of a Major Policy Change .................. 31 

6.  Conclusions and their Policy Implications ........................................................................... 43 

Reference List ............................................................................................................................... 46 

Technical Appendix: Greenhouse Gas Emissions from Agricultural Activities in Brazil, by 
Commodity and by Production Technology ................................................................................. 55 

 



2 
 

List of Tables 

Table 1: Above-Ground Carbon Stocks in Native Vegetation for FPUs in LAC ......................... 16 
Table 2: GHG Emissions for Rice and Coffee Production in Brazil, by Production Technology 
and by Region ............................................................................................................................... 21 
Table 3: Estimates of CO2 Emissions for LAC, by Livestock Category ...................................... 24 
Table 4: Decomposing Demand Drivers of Agricultural GHG Emissions in LAC (2010 to 2030)
....................................................................................................................................................... 29 
Table 5: Agricultural GHG Emissions, by Sub-Sector, 2010 and 2030 ....................................... 31 
Table 6: Agricultural area and GHG emissions in 2030, baseline and no expansion policy ........ 33 
Table 7: Cumulative Agriculture GHG Emissions (2010-2030), Baseline and No Expansion 
Policy Scenario ............................................................................................................................. 34 
Table 8: Cultivated Area & Gross Value of Agriculture in 2030, Baseline & Policy Simulation 38 
Table 9: Gross Value of Agriculture, Baseline and Effects of No Expansion Policy .................. 40 
Table 10: Regional Crop-Specific Greenhouse Emissions for Brazil .......................................... 55 
 
 

List of Figures 

Figure 1: The IMPACT Model's Food Production Units within the LAC Region ....................... 11 
Figure 2: Ecological Zones of the World ...................................................................................... 14 
Figure 3: Overlay of IMPACT Model FPUs and IPCC Ecological Zones ................................... 15 
Figure 4: Crop-Specific GHG Emissions Estimation Pathways in EX-ACT ............................... 20 
Figure 5: Projected World Prices for Key Commodities--Baseline Scenario (US$/mt) .............. 25 
Figure 6: Projected World Prices for Beef – Baseline Scenario (US$/mt) ................................... 26 
Figure 7:  Decomposition of Annual Average Rates of Cereal Production Growth to 2030 
(Global) ......................................................................................................................................... 27 
Figure 8: Decomposition of Annual Average Rates of Cereal Production Growth to 2030 (Latin 
America) ....................................................................................................................................... 28 
Figure 9: Net Trade in Selected Commodities, LAC Region ....................................................... 35 
Figure 10: Net Trade in Selected Commodities, Central America and the Caribbean ................. 36 
Figure 11: World Commodity Price Changes Associated with No-Expansion Scenario ............. 41 
  



3 
 

1.  Executive Summary 
 
The world demand for food and feed will increase by between 50% and 85% from 2009 to 2030, 

and a substantial part of the growth in demand is expected to be met by farmers in LAC by 

intensifying production activities on existing agricultural lands and by expanding the agricultural 

frontier.  A rapid expansion of the agricultural frontier in the region could easily undo any 

progress made by REDD+ (Reduced Emissions from Deforestation and Forest Degradation) and 

other policies.  Thus, one challenge for LAC is to increase aggregate agricultural production to 

meet this growing demand for food/fiber/energy without proportionally increasing greenhouse 

gas emissions.  However, agriculture’s potential contributions to reducing GHG in LAC are 

unclear, and the implications of policy actions (including publicly funded research on 

technological change) to reduce agricultural GHG emissions for food production, food prices, 

agricultural employment or agricultural income are not known.  Some of these implications may 

be particularly important to the poor within and outside of LAC.  This research project begins to 

fill some of these important gaps in knowledge. 

Two existing models were enhanced to examine agriculture-GHG links in LAC; the 

IFPRI IMPACT model provides national, regional and global perspectives; and a CGE model of 

Brazil provides sub-national and national perspectives.  This Discussion Paper focuses on the 

IMPACT model.1   

The IMPACT model baseline scenario (run to 2030) reminds us that world food situation 

has recently departed from its very long-term trend of declining real food prices to one of slowly 

increasing real prices for major grains and livestock products, especially beef products.  This 

new trend will pose new and perhaps serious challenges for the world’s poor and food insecure, 

and may make the task of managing agriculture in LAC to reduce GHG emissions more 

contentious and more costly.   

The IMPACT model baseline scenario also highlighted the very significant contribution 

of agriculture in LAC to GHG emissions – approximately 980 million tons of CO2 equivalent 

were emitted in 2010 alone; that total is expected to decline to approximately 871 million tons by 

2030.  Moreover, the sub-sectoral GHG emissions varied substantially by country, e.g., in 2010, 

cropping activities contributed 7% of all emissions in Chile, while the cattle herd in Brazil 
                                                            
1 Results of the baseline and policy scenarios associated with the CGE model of Brazil will be examined in a 
companion Discussion Paper. 
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contributed 54% of that country’s total agricultural GHG emissions.  Per-hectare contributions 

associated with land clearing were very large (in some ecological zones emitting over 700 t CO2 

eq./ha), and although area cleared is small relative to total cropped area in most LAC countries, 

the percentage contribution of forest clearing to total agricultural GHG is significant (e.g., in 

2010, nearly 60% for Central America and the Caribbean but only 26% for Colombia).  The 

share of GHG emissions associated with land clearing falls over time for all countries in LAC 

(e.g., between 2010 and 2030, land clearing’s contribution to GHG emissions in Brazil fell from 

40% to 26% .  

An examination of the major demand drivers of agricultural change in LAC (with 

consequences for GHG emissions) revealed that while China, India and Brazil all play important 

roles in shaping the world food situation, none of these countries contributed more than 4% to 

demand-induced agricultural changes in LAC over the 2010-2030 period, although the influences 

of these large countries were predominantly felt over the next decade or so.     

The IMPACT model was used to examine the effects of a hypothetical (but politically 

sought-after in some arenas) complete and effective ban on the clearing of native vegetation for 

agriculture in tropical areas within LAC on GHG emissions, food production, food prices, and 

child malnutrition at several spatial scales.  Results suggest that a complete ban on land clearing 

for agriculture would significantly reduce GHG emissions associated with the clearing of forests 

and other forms of natural vegetation vis-à-vis what would have occurred in the absence of the 

ban.  The land ‘saved’ (approximately 3.3 million hectares) is approximately equally distributed 

across the Amazon, northern South America and the Central America & Caribbean sub-regions 

that comprise the LAC tropics.  The total volume of GHG emissions avoided due to land not 

being cleared (about 1.8 billion tons of CO2 equivalent) is concentrated in the Amazon and 

Central America & Caribbean sub-regions where tropical forests cover much of the area into 

which agriculture would expand.  The ban reduces (as expected) agricultural production within 

tropical areas in LAC.  However, these economic losses (e.g., US$ 12.7 billion in 2030, 

compared to the baseline) are not distributed uniformly across the three sub-regions within 

tropical LAC – the northern South American ‘rim’ around the Amazon suffers approximately 

45% of all losses in gross value of agricultural output attributable to the ban.  At country level, 

though, some of the losses tended to be mitigated by agricultural gains in non-tropical areas.  

Brazil, for example, would likely experience net gains associated with the ban on area expansion 
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in the tropics.  Central America & Caribbean, Colombia, Ecuador, Peru, and Mexico would all 

suffer significant declines in gross value of agriculture, with Ecuador experiencing the largest 

losses, when measured as a percent of total agricultural GDP.   

These losses could potentially be offset by compensating the appropriate stakeholders for 

the tons CO2 equivalent retained in the native vegetation.  However, the very wide range of 

relatively recent market prices for CO2 emissions suggests that there is great uncertainty 

regarding the value of avoided GHG emissions.  That said, at the average price of CO2 

equivalent OTC transactions in LAC in 2009 (roughly US$ 4.30/t CO2 eq.), our estimates 

suggest such compensation schemes could cover over 1/2 of the value of the losses in 

agricultural output in the tropics associated with the ban.   

The ban also induces some increases in area expansion and some product mix 

adjustments that increase agricultural production and GHG emissions in non-tropical areas 

within LAC; the agricultural gains (e.g., approximately US$ 3.6 billion in 2030, compared to the 

baseline) of the non-tropical ‘winners’ in LAC represent 14% of the economic losses 

experienced in the tropical areas, with area expansion outside the tropical zone representing 

about 3% of area saved in the tropical zone.  The ban also promotes agricultural expansion and 

change outside of the LAC region as farmers in other producing areas compensate for reductions 

in supply from LAC; such ‘leakages’ will likely play fundamental roles in the design and 

implementation of policies for managing agricultural GHG emissions.   

While the local effects on production and agricultural income are substantial, as one 

moves away from tropical areas in LAC to assess the broader impacts of the land clearing ban, 

the effects are quickly muted.  Area expansion outside tropical LAC, increased productivity 

within and outside tropical LAC, and decreases in global demand for some agricultural products 

(all in response to small increases in product prices) are sufficient to ‘cover the gap’ in food 

production that saving the natural vegetation in tropical areas in LAC would create.  Therefore, 

at global level, the overall effects on commodity prices (including prices of beef products) of the 

simulated ban on area expansion on LAC are not large and (hence) the effects on childhood 

malnutrition are small.   
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2.  Introduction 
 
The world demand for food will increase by between 50% and 85% from 2009 to 2030 (Msangi 

and Rosegrant 2009).  The LAC contains some of the few remaining large areas available in the 

world that could be converted to agriculture; there will be great pressure on the region to do so to 

help meet global food needs (Nepstad et al. 2008).  Increased demand for animal products in 

general, and for beef products in particular, will intensify the pressure to expand pasture area in 

LAC due (in part) to the extensive nature of cattle production systems and relatively low 

stocking rates in the region (Torre et al. 2010).  A substantial part of the growth in demand for 

food will be met by intensifying production activities on existing agricultural lands; this 

combination of agricultural extensification and intensification will have environmental 

consequences – our focus here is on greenhouse gas (GHG) emissions.   

But this pressure to expand and to intensify agriculture will not be spatially uniform 

within the region; site-specific and product-specific production and transportation costs, on the 

one hand, and product-specific demand, on the other, will jointly determine where pressure for 

increased agricultural land and productivity growth will be most intense, and when this will 

occur (Braun 2007, Fearnside 2001).  Agricultural and other policies can affect costs and hence 

the location of area expansion and other investments in agriculture.   

Regardless of how and where these pressures play out, expanding cultivated area in LAC 

will lead to deforestation which is, by far, the largest per-hectare agricultural generator of GHG 

emissions (Nepstad et al. 2006a).  However, the amount of emissions associated with land 

clearing varies greatly within LAC, and also within some countries in LAC (Klink et al. 2005).  

Therefore, ‘steering’ forest/savannah-clearing activities towards these relatively low-emitting 

areas may be one strategy for reducing the GHG implications of an expanding agricultural sector 

in LAC.   

However, regardless of where forest/savannah clearing has occurred, the vast majority of 

agricultural activities cannot ‘replace’ even a small fraction of the natural stocks of above-

ground carbon (Fearnside et al. 2009).  Notable exceptions are agroforestry systems, some of 

which can replace up to about half of the carbon stocks of native vegetation (Vosti et al. 2001).  

With a few exceptions (e.g., coffee and citrus), limited demand for the products produced by 

these systems limits the cultivated area they will occupy; public policy efforts to artificially boost 

demand for such products have by-and-large failed.   
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Switching from one agricultural product to another can have implications for GHG 

emissions, and the same can be said for changes in production technologies for many crops.   But 

per-hectare reductions in GHG emissions associated with changes in product mix or production 

technology will be small, certainly vis-à-vis the GHG emissions associated with expanding 

cultivated area (Bernoux et al. 2006).  That said, because cultivated area in LAC is so large (and 

likely to grow), these small changes could add up to very substantial reductions in GHG 

emissions.   

Due to the size of potential expansion of cultivated area in LAC, the remaining substantial 

scope for agricultural intensification in some areas, and the possibility of rapid changes in 

product mix in large parts of the region, the feedback effects of policies designed to reduce GHG 

emissions in agriculture could have significant impacts on commodity prices. 

Finally, any rapid expansion of agriculture production in the region could easily undo, 

locally and regionally, any progress made on REDD+ (Reduced Emissions from Deforestation 

and Forest Degradation) and other policies aimed at retaining native vegetation to safeguard 

biodiversity and to reduce the contribution of agriculture to global climate change.  REDD 

programs, in particular, are designed to share with land user groups some of the benefits 

associated with retaining forested areas, and hence hold the promise of influencing their land and 

forest use decisions (Kossoy and Ambrosi 2010).  However, local ‘successes’ may be 

undermined by higher commodity prices making REDD programs more costly.  Or, local 

‘successes’ may deflect the demand for new agricultural land to other areas where REDD 

policies are not being pursued or are less effective.  Therefore, unless REDD programs are 

carefully orchestrated within LAC, their overall effects on GHG emissions from forest/savannah 

conversion may be small (Angelsen 2010).  Orchestrating REDD programs with other policies 

that affect site-specific demand for agricultural land may also be pivotal to local or regional 

success.   

Thus, an important challenge for LAC is to increase agriculture production to meet this 

growing global demand for food, fiber and energy without proportionally increasing greenhouse 

gas emissions.  Helping countries in the region to re-emphasize rural development along 

pathways that retain forests and other non-agricultural landscapes is a difficult task, but an 

important ingredient to achieving agricultural and environmental objectives.   
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While progress has been made in measuring the site-specific and activity-specific GHG 

emissions associated with an array of land clearing and agricultural activities that are practiced or 

could be practiced in LAC (IPCC 2006), there are important gaps in knowledge that need to be 

filled before informed policy action can proceed.  For example, what is the current contribution 

of agriculture to GHG emissions in LAC and which sub-sectoral activities generate the most 

emissions?  If current trends in the world food supply-demand nexus continue, what will be the 

contribution to GHG emissions of LAC agriculture in 2030?  If aggregate levels of GHG 

emissions from agriculture in LAC are deemed to be excessive, what would be the local 

implications for food production, gross value of agricultural output and rural employment of 

managing agriculture to reduce agricultural GHG emissions?  At national level, what would be 

the implications for reducing agricultural GHG emissions for food trade patterns and possibly for 

national food security strategies?  At national level for large and ecologically diverse countries, 

and for the region as a whole, there may be ‘winners’ and ‘losers’ associated with efforts to curb 

GHG emissions in agriculture (Chomitz 2007) – who are these ‘winners’ and ‘losers,’ and what 

are the sizes of their respective gains and losses?  Finally, what might be the global implications 

for food prices and malnutrition of LAC actions to substantially reduce agricultural GHG 

emissions? 

To begin to address these issues, a global model of agriculture (the IFPRI IMPACT 

model) was enhanced to examine agriculture-GHG emissions links and the effects of policy and 

other changes on these links.  Once enhanced, the model was used to address the following 

specific issues. 

First, we assess the recent and future contributions under a “business as usual” baseline 

scenario of agriculture in LAC to GHG emissions, both directly in terms of agricultural 

production activities, and indirectly via the clearing of forested areas for these activities.  This 

assessment is made at multiple spatial scales, beginning with the Food Production Unit (FPU) as 

identified in the IFPRI IMPACT model, then moving to the more aggregate country, regional 

and global levels. 

Second, we examine the contributions of increases in food demand from India, China and 

Brazil to this “business as usual” baseline scenario to assess the relative contribution of these 

fast-growing countries to agricultural change in LAC, and the GHG emissions consequences of 

those changes. 
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Third, to begin to understand the effects of managing agriculture to reduce GHG 

emissions in LAC, we examine the effects of a somewhat extreme (though not arbitrary) policy 

regarding the expansion of the agricultural frontier in the region -- a total and effective ban on all 

agriculture-led land clearing in the tropical areas of LAC. 

The remainder of the report is structured as follows.  The next section identifies and 

defends the choice of the modeling tool used, and reports the enhancements introduced to the 

model to improve its ability to address the research issues set out above.  We then report the 

results of the baseline and policy scenarios associated with the IMPACT model.  The final 

section presents conclusions and their policy implications. 

3.  Choice of Predictive Models to Address Agriculture GHG Issues 
 
3.1 Model Choice  
 
An array of models is available to assess the effects of agricultural change on GHG emissions.  

For example, beginning at the most disaggregated level, plot-level models can provide very 

detailed characterizations of production technologies, but generally do not capture the optimizing 

nature of farmer decisions (Bennett 2009).  Farm-level models are better equipped to deal with 

farm-level decision making (Vosti et al. 2001), but are generally very site-specific and almost 

always autarchic in the sense that farmers’ actions do not influence input or output prices, which 

is a critical feed-back loop for the research questions being examined here.  Regional and 

national (programming) models of agriculture can effectively capture both the details associated 

with agricultural production activities and the input/output markets associated with them, but 

these models take international prices as ‘given’ and tend to be less useful for long-term 

assessments of the effects of policy changes (Janssen 1998).   Econometric models at national 

and regional scales can also be quite useful in predicting the effects of some policy changes (e.g., 

price policies), but the market effects of farmer adjustments to such policy changes are generally 

not captured.  To address the research issues set out above, the following model was selected for 

its relative strengths.   

 The IMPACT model was chosen to provide broad regional and global coverage for 

several reasons.  First, the model is global in scope and contains sufficient detail regarding 

world-wide agricultural demand/supply interrelationships to assess the potential effects of policy 
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changes in LAC on world food prices.  Second, the model sufficiently disaggregates the LAC 

region to allow for the identification of spatial differences in the costs/benefits associated with 

policy changes.   Third, the model is able to produce stable, long-term results, which is important 

since the policy effects examined in this project take time to play out.  Fourth, the model has an 

established, credible long-term baseline against which to compare the results of policy 

simulations.  Fifth, the model uses site-specific constraints on water availability in determining 

crop mix and production technology, a key strength given the pivotal role that irrigation will play 

in meeting future food/fiber/fuel needs.  Finally, the model has an algorithm for converting 

changes in world food prices into estimates of malnutrition; this dovetails with our concerns for 

the effects of policy and other changes on malnutrition. 

3.2 The IFPRI IMPACT Model  
 
The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) 

developed at the International Food Policy Research Institute (IFPRI) is used to generate some of 

the simulation results presented below.  In a nutshell, the partial-equilibrium, multi-market 

model encompasses most of the countries and regions in the world and the main agricultural 

commodities produced in them.  The model is comprised of systems of supply and demand 

equations that represent market equilibrium interactions that produce a baseline and alternative 

scenarios for global food demand, supply, trade, income and population.  Within each country or 

region the levels of supply, demand, and net trade of agricultural commodities are determined in 

relation to prices transmitted from the world market, such that international trade flows are 

balanced, and provide the linkage between all countries and regions.   

Supply and demand functions incorporate supply and demand elasticities to approximate 

the underlying production and consumption behavior. World agricultural commodity prices are 

determined annually at levels that clear international markets.  Domestic crop production is 

determined by area and yield response functions which are specific to food production units 

(FPU), some of which fall within countries while others span international borders.  The FPUs 

that comprise the LAC region are identified in Figure 1.  Harvested area is specified as a 

response to the crop's own price, the prices of other competing crops, the projected rate of 

exogenous (non-price) growth trends in harvested area, and the availability and use of water.  

The projected exogenous trend in harvested area captures changes in area resulting from factors 
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other than direct crop price effects, such as expansion through population pressure and 

contraction from soil degradation or conversion of land to nonagricultural uses. Yield is a 

function of the commodity price, the prices of labor and capital, water, and a projected non-price 

exogenous trend factor that reflects productivity growth driven by changes in intrinsic crop traits 

and technology improvements.  Livestock production is modeled similarly to crop production 

except that livestock yield reflects only the effects of expected developments in technology. 

Total number of livestock slaughtered is a function of the livestock’s own price and the price of 

competing commodities, the prices of intermediate inputs, and a trend variable reflecting growth 

in the livestock slaughtered.  

Figure 1: The IMPACT Model's Food Production Units within the LAC Region 

 

Agricultural supply is also determined by the availability and use of water.  Hydrologic 

processes, such as precipitation, evapotranspiration, and runoff are taken into account to assess 

total renewable water in a set of the world’s most important food-producing river basins.  Water 

demand for domestic, industrial, livestock, and irrigation uses are determined, and the available 
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water resources area allocated across sectors on the basis of priority in order to meet these 

competing demands.  

Commodity-specific domestic demand is the sum of its demand for food, feed, and other 

uses.  Food demand is a function of the price of the commodity and the prices of other competing 

commodities, per capita income, and total population. Per capita income and population increase 

annually according to country-specific population and income growth rates.  Feed demand is a 

derived demand determined by the changes in livestock production, feed ratios, and own- and 

cross-price effects of feed crops. Demand for feedstock for biofuels production is imposed 

exogenously on the model on the basis of implied policy-driven growth in ethanol and biodiesel 

production volumes.  

Prices are endogenous in the system of equations for food.  Domestic prices are a 

function of world prices, adjusted by the effect of price policies and expressed in terms of the 

producer subsidy equivalent (PSE), the consumer subsidy equivalent (CSE), and the marketing 

margin (MI).   

Country and regional sub-models are linked through trade.  Commodity trade by country 

is the difference between domestic production and demand.   

4.  Establishing Agriculture-GHG Links for the IMPACT model  
 
Agriculture contributes to GHG emissions (positively and negatively) in several ways.  First, 

where agriculture replaces natural vegetation GHG emissions occur, with the types and amounts 

of GHG emissions depending on the type of vegetation being cleared and the methods used to do 

so (Zanocco and Vosti 2010a, IPCC 2006, Fearnside et al. 2009).   Second, ongoing cropping 

activities being practiced on cleared land can either emit or fix GHG, depending on the products 

produced, the location of production, and production technologies used (Hutchinson et al. 2006, 

Bernoux et al. 2010, Cerri et al. 2010).  Finally, livestock can also contribute significantly to 

GHG emission; these contributions, too, vary depending on the type of livestock and the 

technologies used to feed and manage herds.    

Existing data agriculture-GHG links and spreadsheet-based models used to manage such 

data were tapped to generate estimates of the various type of agricultural GHG emission for each 
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of the LAC FPUs in the IMPACT model.  The following three sections summarize the 

methodologies we adopted.   

4.1 Estimating GHG Emissions Associated with Area Expansion in Agriculture in LAC 
 
We adopt a three-part strategy for estimating the amount of carbon that would be released from 

the agriculture-led conversion of natural vegetation for each of the IMPACT model’s FPUs in 

the LAC Region.  We first map ecological zones2 into the FPUs using GIS.  The next step 

involves generating estimates of carbon stocks in native vegetation for each ecological zone.  

The final (trivial) step involves summing up per-hectare carbon losses across the (pre-

determined) ecological zones that comprise each FPU.  

Mapping Ecological Zones into the IMPACT Model’s FPUs 
 

To account for the heterogeneity of ecological zones and forest types within each FPU, 

we compare the mapping of ecological zones estimated by IPCC (2006) with the map of the 

FPUs in LAC (IFPRI 2008).  A map of the ecological zones developed by the IPCC is used 

(Figure 2).  Utilizing spatial mapping software, estimates of the proportion of ecological zones 

lying within each of the FPUs in LAC are made.   

                                                            
2 Spatial data for ecological zones was obtained from FAO: GeoNetwork, http://www.fao.org/geonetwork/, 
shapefile last updated 2002-05-31. 

http://www.fao.org/geonetwork/
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Figure 2: Ecological Zones of the World 

 

Source:  2006 IPCC Guidelines for National Greenhouse Gas Inventories 

Inspection of Figure 2 reveals the following ecological zones that are relevant for LAC:  

subtropical mountain systems (SM), tropical moist deciduous forest (TAWa), tropical dry forest 

(TAWb), tropical rain forest (TAr), tropical mountain systems (TM), subtropical humid forest 

(SCf), subtropical dry forest (SCs), subtropical steppe (SCSh), temperate steppe (TeBSK), 

temperate continental forest (TeDo), tropical shrubland (TBSh), subtropical desert (SBWh), and 

temperate mountain system (TeM).  

Figure 2 depicts the 32 FPUs within the IMPACT model that are relevant for LAC.  

Figure 3 presents the overlay of the FPUs onto the map of ecological zones.  Using spatial 

mapping software, assessments of the proportions of each of the ecological zones that comprise 

each of the FPUs were made.  These proportions form the grey-shaded core of Table 1.   
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Figure 3: Overlay of IMPACT Model FPUs and IPCC Ecological Zones 
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Table 1: Above-Ground Carbon Stocks in Native Vegetation for FPUs in LAC 

 

 Estimated Average Above-Ground Carbon Stocks in Native Vegetation, 
 by Ecological Zone in LAC (t C/ha) 

Average 
Carbon 
Stocks, 
by FPU 
(t C/ha) 

 
 

TM TBSh Tar TAWa TAWb SCf SCs SM SBWh TeDo  
TeBSK TBWh TeM SCSh 

Average A-G 
Carbon, by Biome 94 53 198 133 55 133 130 69 3.1 72 31.5 4.1 69 31.5 

FPUs in the IMPACT 
Model 

 Proportion of Land in Each FPU Belonging to Each Ecological Zone 

 Amazon Brazil 0.002 0 0.918 0.08 0 0 0 0 0 0 0 0 0 0 192.59 
Central Amazon  0.325 0 0.407 0.155 0.113 0 0 0 0 0 0 0 0 0 138.00 
Amazon Colombia 0.058 0 0.941 0.002 0 0 0 0 0 0 0 0 0 0 191.91 
Amazon Peru 0.406 1E-05 0.593 0 0 0 0 0 0 0 0 0 0 0 155.72 
Amazon Ecuador 0.502 0 0.498 0 0 0 0 0 0 0 0 0 0 0 145.82 
Caribbean 0.186 0 0.602 0.212 0 0 0 0 0 0 0 0 0 0 164.89 
Central America  0.064 3E-04 0.471 0.343 0.119 0 0 0 0 0 0 0 0 0 151.43 

Coastal Chile 0.19 0.004 0 0 0 0 0.145 0.071 0 0.272 0.065 0.107 0.078 0.055 70.83 
Cuba  0.051 0 0.199 0.733 0.017 0 0 0 0 0 0 0 0 0 142.66 
Central Mexico 0.18 0 0.014 0.141 0.083 0 0 0.074 0.272 0 0 0 0 0.235 56.34 
Northern South 
America 0.032 0 0.672 0.295 0 0 0 0 0 0 0 0 0 0 175.448 
Northeast Brazil  0 0 0.127 0.468 0.405 0 0 0 0 0 0 0 0 0 109.66 
Northwest 
Colombia 0.339 0.002 0.372 0.227 0.044 0 0 0 0 0 0 0 0 0 138.28 
Northwest Ecuador 0.348 4E-04 0.477 0.087 0.073 0 0 0 0 0 0 0 0 0 142.60 
Orinoco Colombia 0.127 0 0.477 0.39 0.006 0 0 0 0 0 0 0 0 0 158.59 
Orinoco, Northern 
SA 0.156 0.001 0.33 0.444 0.063 0 0 0 0 0 0 0 0 0 142.58 
Parana Argentina 0.113 0 0.032 0.424 0.208 0.224 0 0 0 0 0 0 0 0 114.41 
Parana Brazil 0.042 0 0.020 0.825 0.003 0.110 0 0 0 0 0 0 0 0 132.43 
Parana South 
America 0.151 0 0.040 0.291 0.517 0 0 0 0 0 0 0 0 0 89.34 
Coastal Peru 0.558 0.017 2E-04 0 0.011 0 0 0 0 0 0 0.191 0 0 54.60 
Rio Colorado 
Argentina 0 0 0 0 0.012 0.017 9E-05 0.25 0 0.006 0.089 0 0.006 0.62 43.34 
Rio Grande Mexico 0.017 0 0 0 0 0 0 0.039 0.606 0 0 0 0 0.337 16.85 
Salada Tierra 
Argentina 0.087 0 0 9E-06 0.216 0.485 0 0.052 0 0 0 0 0 0.16 93.19 
San Francisco Brazil 0.072 0 0.166 0.394 0.34 0.028 0 0 0 0 0 0 0 0 114.41 
Tierra Argentina 0 0 0 0 0 0 0 0 0 0.055 0 0 0.19 0.755 40.85 
Tocantins Brazil 0.018 0 0.26 0.722 0 0 0 0 0 0 0 0 0 0 149.20 
Northern Mexico 0 0 0 0.02 0.148 0 2E-04 0.263 0.499 0 0 0 0 0.068 32.75 
Uruguay-Brazil 3E-04 0 0.002 4E-06 0 0.997 0 0 0 0 0 0 0 0 133.15 
Uruguay  0 0 0 0 0 1 0 0 0 0 0 0 0 0 133 
Yucatan Caribbean 0.143 0 0.384 0.461 0.01 0 0 0 0 0 0 0 0 0 151.35 
Yucatan Mexico 0.177 0 0.169 0.575 0.075 0 0 0 0 0 0 0 0 0.004 130.81 
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Estimates of Above-Ground Carbon Stocks in Native Vegetation for Ecological Zones 
 

The next step involves estimating carbon stocks stored in native vegetation for each of 

the ecological zones that comprise the FPUs.  An array of scientific sources was used for this 

purpose, the most important being the Commission Decision (2010)3.  All values are in tones of 

carbon per hectare (t C/ha).  In Table 1, these values4 appear in the grey shaded third row. 

Based on carbon estimates for each of the ecological zones and on the proportion of each 

of these zones in each of the FPUs, we generate estimates of the average carbon losses associated 

with agriculture-led conversion of native vegetation for each FPU.  These (bolded) estimates 

appear in the final column of Table 1.   

Many important caveats apply; we mention three here.  First, one key assumption 

underlying all carbon stock estimates for land use change is that the carbon within the biomass 

will eventually be volatilized5, either by burning6 or by decay7.  Second, our estimates do not 

account for the loss of the yearly carbon sink that some types of land cover generate over time 

for land cover types that have not reached their climax (most ecological systems in the LAC 

region have reached this state).  Third, the method of land conversion can also matter; processes 

involving large machines (compared with essentially manual conversion practices) can add 

substantially to the GHG emissions associated with the conversion of native vegetation.   

  
                                                            
3 Source:  Guidelines for the calculation of land carbon stocks, Official Journal of the European Union (2010).  
Adapted from Table 17 (L 151/37): Vegetation values for forested land with more than 30% canopy cover. 

4 For more information on how these estimates were obtained, reference the research brief “Estimating GHG 
Emissions Associated with Area Expansion in Agriculture in LAC.” (Zanocco and Vosti 2010a) 
 
5 To obtain emission estimates for preliminary modeling purposes, we assume that all above-ground carbon 
biomass is volatilized into carbon dioxide.   This assumption implies that above-ground biomass is cleared without 
burning practices.  Using a value of 12 g/mol for carbon and 44 g/mol for carbon dioxide, the conversion ratio for 
carbon to carbon dioxide is 44/12 or 44/12*C => CO2 (UNFCCC 2009).  This conversion factor provides a way to 
estimate GHG emissions associated with land-use change without knowing specific clearing methods or practices.  
Additionally, it is the default conversion factor used by FAO’s EX-ACT model for non-burning aboveground 
biomass clearing (based on IPCC guidelines). 

6 While burning practices vary substantially, as an example, we consider the carbon emissions associated with 
flaming combustion.  For every 1 ton of carbon volatilized by flaming combustion, approximately 7% of total 
emissions (in tons) is emitted as CO and less the 0.1% is emitted as CH4.  The remaining carbon is volatized as CO2.  
With typical biomass burn efficiencies below 50% in the tropics, we expect the differences in net emissions from 
land clearing practices (logging, burning, logging + burning, etc.) to have a small yet difficult to measure effect on 
our estimates.  See Fearnside (2000) and UNFCC (2009) for a more in-depth discussion of this topic. 

7  Biomass carbon volatized from decay is nearly completely converted to CO2, with less than 0.003% of carbon 
volatized as CH4.  See Fearnside (2000) for further explanation of greenhouse gas emissions associated with 
decomposition from land-use change. 
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4.2 Greenhouse Gas Emissions Associated with Annual and Perennial Crop Production 
Activities 
 
Agricultural activities being practiced on cleared land can either emit or fix GHG, depending on 

the products produced, the location of production, and production technologies used (Hutchinson 

et al. 2006; Bernoux et al. 2010; Cerri et al. 2010).  In this section, we provide estimates of the 

average annual flows of GHG (in terms of CO2 equivalents)8 generated by one-hectare units of 

cropland dedicated to an array of crops produced in five agroecological regions in Brazil (North, 

Northeast, Centre West, Southeast and South), using different production technologies.  Most of 

our estimates are generated by a spreadsheet-based calculator (EX-ACT9) developed by FAO 

that employs an IPCC accounting methodology to calculate NO2, CH4, and CO2 emissions.  For 

agricultural production activities not currently supported by EX-ACT, we reference studies that 

provide emission estimates using IPCC guidelines.10  

The EX-Ante Carbon-Balance Tool (EX-ACT) 
 

The EX-ACT model was developed by the FAO to measure the impacts of policy-

induced and other changes in forestry and agricultural activities on net carbon balance (Bernoux 

et al. 2010).  This land-use-based accounting system measures changes in carbon soil stocks, and 

CH4 ,N20 and CO2 emissions associated with agricultural and forestry activities, and expresses 

them in terms of net flows of t CO2 eq./ha/year.  The purpose of this tool is to estimate the 

impacts of proposed GHG mitigation interventions at the  scale of the proposed intervention, but 

results can be scaled up to the regional and nation levels (Cerri et al. 2010).  The EX-ACT tool is 

comprised of 18 linked Microsoft Excel sheets that contain IPCC-compatible information on soil 

type, climatic conditions, and land-use and management practices needed to generate estimates 

                                                            
8 Although many greenhouse gas emissions are associated with farm activities, CO2, CH4, and N2O (carbon dioxide, 
methane, and nitrous oxide) are recognized as the most prominent contributors (Smith et al. 2008; Paustian 
2004); we focus on these.  CO2 is the product of residue burning, machine use, and tillage practice; CH4 emissions 
result from flooding soils for rice cultivation; and N2O is the product of nitrogen-based fertilizer application. 
Conversion to CO2 equivalents takes into consideration the different reflective capacities of each gas in the 
atmosphere (IPCC 2006).  

9 This accessible tool was developed to estimate the emission mitigation potential of rural development and other 
agricultural projects.  It is based on international standards and methods developed by the IPCC and FAO.   

10 In earlier briefs “Estimating GHG Emissions Associated with Livestock Production in LAC” and “Estimating GHG 
Emissions Associated with Area Expansion in Agriculture in LAC,” IPCC National Inventories Guidelines were used 
in all cases that were applicable.  



19 
 

of GHG emissions, and provides “business-as-usual”11 and intervention mitigation scenarios as 

outputs. 

The sequence of steps used by the EX-ACT tool to asses GHG emissions is similar to the 

thought process a farmer would use in making his/her decisions: where to plant, what to plant, 

and what production technology to use.  While this logical agricultural decision making 

framework allows us to estimate emissions from fertilizer application, fuel usage, etc., quite 

accurately, there are gaps in the model’s internal accounting system that can be addressed using 

outside sources (e.g., the absence of irrigation as a contributing factor to crop- and technology-

specific GHG emissions).  The flow chart below (Figure 4) describes the steps12 involved in 

using EX-ACT to generate estimates of CO2 emissions for each crop, the step-specific 

information contained in the model to facilitate this process, and identifies the points at which 

data from outside the model are required.13 

                                                            
11 “Business as usual” is defined as the land use strategy that is being supplanted by the proposed intervention.    
Examples include replacing forested land with annual crops, or, switching from annual crops to perennial tree 
crops.  In both examples, the GHG emissions associated with the land use existing prior to the intervention would 
be the “business as usual” scenario.   

12 For a complete explanation of how these estimates were obtained, see the research brief “Greenhouse Gas 
Emissions Associated with Annual and Perennial Crop Production Activities” (Zanocco and Vosti 2010c). 

13 These are estimates that do not have direct default values in the EX-ACT model.  
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Figure 4: Crop-Specific GHG Emissions Estimation Pathways in EX-ACT 

 

 GHG emissions coefficients for five macro regions of Brazil (plus one national summary 

measure) for rice production and for establish coffee production appear in Table 2; a complete 

set of coefficients is presented in the Appendix in Table 11.  The case of rice production is 

showcased for several reasons.  First, note that GHG emissions vary by region of Brazil, due to 

differences in soil types, mainly.  Second, emissions vary under different production 

technologies; irrigation dramatically increased GHG emissions, due primarily to fertilizer 

applications.  Third, soil management practices have the ability to ‘shift’ GHG emissions from a 

source to a sink, though the potential for doing so varies by region, primarily (once gain) due to 

differences in soil type.  Soil management practices are not relevant for (e.g.) established coffee 

production systems (second half of Table 2), which emit about one ton of CO2 eq ha/year – as a 

comparison, newly established coffee production systems can sequester up to about 5 tons of 

CO2 ha/year (see Table 11). 
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Table 2: GHG Emissions for Rice and Coffee Production in Brazil, by Production Technology 
and by Region 

Crop Regions in 
Brazil 

Irrigated vs. 
Rainfed 

Emissions 
flows 

associated 
with fertilizer 
application in 

CO2 
eq./ha/year 

CO2 
equivalent 

per year 
associated 

with 
irrigation 

Range of SOC 
sequestration or 

emissions, rotation 
crop systems, -
0.627 to +0.687 

Range of yearly net flow of CO2 

equivalent per hectare of 
cropland 

sequest emit Low High Average 

Rice 

North 
upland rainfed 0.08 0 -0.627 0.687 -0.55 0.77 0.1 

upland irrigated 0.08 0.15 -0.627 0.687 -0.55 0.77 0.1 
flooded 4.10 0.15 0 0 0 0 4.3 

Southeast 
upland rainfed 0.30 0 -0.627 0.687 -0.33 0.99 0.3 

upland irrigated 0.30 0.15 -0.627 0.687 -0.33 0.99 0.3 
flooded 4.10 0.15 0 0 0 0 4.3 

Northeast 
upland rainfed 0.15 0 -0.627 0.687 -0.48 0.84 0.2 

upland irrigated 0.15 0.15 -0.627 0.687 -0.33 0.99 0.3 
flooded 4.10 0.15 0 0 4.25 4.3 

South 
upland rainfed 0.35 0 -0.627 0.687 -0.27 1.04 0.4 

upland irrigated 0.35 0.15 -0.627 0.687 -0.12 1.19 0.5 
flooded 4.10 0.15 0 0 4.25 4.3 

center 
west 

upland rainfed 0.29 0 -0.627 0.687 -0.34 0.97 0.3 
upland 0.29 0.15 -0.627 0.687 -0.19 1.12 0.5 
flooded 4.10 0.15 0 0 4.25 4.3 

avg. input 
across 
Brazil 

upland rainfed 0.25 0 -0.627 0.687 -0.38 0.94 0.3 
upland irrigated 0.25 0.15 -0.627 0.687 -0.23 1.09 0.4 

flooded 4.10 0.15 0 0 4.25 4.3 

Coffee 
(establis

hed 
plantatio

n) 

North 
rainfed 0.26 0 -0.627 0.687 -0.37 0.95 0.3 

irrigated 0.26 0.15 -0.627 0.687 -0.37 0.95 0.3 

Southeast 
rainfed 1.04 0 -0.627 0.687 0.41 1.73 1.1 

irrigated 1.04 0.15 -0.627 0.687 0.41 1.73 1.1 

Northeast 
rainfed 0.54 0 0 0 0.54 0.5 

irrigated 0.54 0.15 0 0 0.69 0.7 

South 
rainfed 1.28 0 0 0 1.28 1.3 

irrigated 1.28 0.15 0 0 1.43 1.4 
center 
west 

rainfed 0.99 0 0 0 0.99 1.0 
irrigated 0.99 0.15 0 0 1.14 1.1 

avg. input 
rainfed 0.97 0 0 0 0.97 1.0 

irrigated 0.97 0.15 0 0 1.12 1.1 
Note to Table: For details regarding content, see Table 11 in the Appendix.  
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Extrapolating Brazil-Based GHG Emissions to the Rest of LAC 
 

Brazil was selected for this pilot exercise because of the country’s broad array of 

ecological conditions.  For the time being, the region-specific, crop/production technology-

specific GHG emission coefficients contained in Table 3 were strategically allocated to similar 

ecoregions throughout LAC.  This provides the IMPACT model with a comprehensive (albeit 

preliminary) set of GHG emissions estimates for all products produced in every FPU in LAC.14 

4.3 Estimating GHG Emissions Associated with Livestock Production in LAC 
 
This section sets out the strategy used to estimate GHG emissions from livestock production 

activities in LAC, and reports the results of its implementation.  We adapt the greenhouse gas 

accounting methodology outlined by the IPCC (2006).  The two major forms of emissions 

associated with livestock production are CH4 from enteric fermentation and N2O from animal 

waste.  We focuses on these two emissions sources and do not account for potential CO2 

emissions associated with machinery used in herd management or the CO2 sinks/sources from 

pasture establishment/management activities.  At this juncture, emissions estimates associated 

with types of livestock are generalized for the entire LAC region.15   

Livestock Emissions 
 

The LAC cattle herd is comprised predominantly of two types of animals (dairy cattle 

and beef cattle), each of which is managed in accordance with a fairly homogeneous production 

system (IPCC 2006).  The commercialized dairy sector is based on grazing on managed pastures 

with some stall feeding.  Each dairy cow is assumed to weigh approximately 400 kg and to 

produce an average of 800 kg of milk per year.  Beef cattle are included in the IPCC category of 

other cattle, which includes steers, bulls and very young cattle; these animals are managed on 

pastures and rangelands.  The average weight of all other cattle is assumed to be 305 kg per head.   

The methane emissions estimates for these two types of cattle are 72 kg CH4/head/yr for 

dairy cattle and 56 kg CH4/head/yr for other cattle.  Under current pasture- and range-based 

manure management systems in Latin America, average methane emissions from manure is 1 kg 

                                                            
14 Future work will focus on generating more refined estimates of crop-/production-technology-specific GHG 

emissions for LAC FPUs located outside of Brazil. 
15 Future research will focus on refining GHG emissions estimates for livestock activities at the more disaggregate 

FPU level.  
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CH4/head/yr for both dairy cattle and other cattle.  The sums of these two methane estimates for 

dairy cattle and for other cattle are reported in column D of Table 4 as total kg CH4/head/yr.   

The second major animal-based contributor to GHG emissions is animal waste.  Columns 

E-H account for this source.  Estimates of kilograms of nitrogen excreted are a function of 

animal body weight (IPCC 2006); on average, dairy cows produce 0.19 kg of nitrogen per day 

per kg of live weight, while beef cattle produce about 0.11 kg of nitrogen per day per kg of live 

weight.  Adjusting from day-length measures to annual measures and multiplying by live body 

weight (column A) yields an estimate of total nitrogen excreted per head per year (column F).  

Approximately 2% of excreted nitrogen is volatized as N20 (column G).  Finally, multiplying the 

volatized amount of nitrogen by the total amount excreted provides an estimate of total N20 

emitted from animal waste, per animal per year.   

To arrive at CO2 equivalent measures, annual N2O and CH4 emissions per head are 

normalized to tons of CO2 per head using the global warming potential (GWP) conversion 

factors of 21 units of CO2 per unit of CH4 and 310 units of CO2 per unit of N2O (IPCC 1995).   

Estimates of the total global warming potential associated with dairy cattle (1.97 t 

CO2/head/year) and beef cattle (1.45 t CO2/head/year) can be found in the first two rows of Table 

4, under the final column (K).   

This GHG emissions calculation procedure was repeated for sheep, goats, alpacas, 

buffalo and swine.  Our estimates for all of these animals are consistent with those provided by 

Embrapa (2002).16  IPCC data were insufficient for estimating the greenhouse gas emissions 

associated with poultry and llama production systems, so a separate method17 was utilized.  

  

                                                            
16 To check these estimated values, the Brazilian Agricultural Research Background Reports “Methane from 

Livestock” and “Nitrous Oxide Emissions from Agricultural Soils” were consulted.  Using 1995 data, total 
estimated emissions of livestock animals was divided by the total head counts, and per-ton CO2/head/yr 
estimates were obtained (bold, next sentence).  The animal-type-specific estimates are consistent with our 
method (CH4+N2O); dairy cattle 1.59, beef cattle 1.43, and sheep 0.18.  Our estimates for dairy cattle are 
somewhat higher than those of Embrapa.  Embrapa estimates based only on CH4 emissions are goats 0.1, buffalo 
1.19, swine 0.4, and poultry 0.002.  

17 Verge et al. (2009) estimates annual poultry emissions as being in the range of 1.06 – 2.16 kg CO2 per 1 kg of live 
weight.  For the purposes of this study, we will use a mean value of 1.61 CO2 kg/yr per 1 kg of live weight.   Live 
bird weight estimates range between 1.5 -2 kg (FAO 2007).  For our purposes, we assume mean live bird weight 
to be 1.75 kg.  Based on these assumptions, we estimate GHG emissions from poultry to be 0.003 ton 
CO2/beak/yr. 
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Table 3: Estimates of CO2 Emissions for LAC, by Livestock Category 

 

Methane Calculations  Nitrous Oxide Calculations Converting 
N2O to CO2 

Converting 
CH4 to CO2 

Final 
Calculation 

of CO2 

Livestock 
Category 

Average 
weight in 

kg per head 
from IPCC 

200618 

Entric 
Fermen-
tation kg 

CH4/head/ 
yr, from 

IPCC 200619 

Manure 
production in 

kg CH4 per 
head per yr, 
from IPCC 

200620 

Total kg 
CH4/head/ 

yr  

Conversion 
factor of 

live weight 
to Kg N 

excreted 
per 1000 kg 
animal per 
day21 (IPCC 

2006) 

Kg N 
excreted per 

head per 
year 

Kg N 
excreted 
conver-

sion factor 
to Kg N2O 

22 

 Total kg 
N20/ 

head/yr 

            

GWP of N20 
factor 

(*310) to 
kg CO2 

GWP of CH4 
factor (*21) 

to kg CO2 

tons 
CO2/head/ 

year 

  A B C D E F G H I J K 
Dairy 
cattle 400 72 1 73 0.48 70.08 0.02 1.40 434.50 1533 1.97 
other 
cattle 305 56 1 57 0.36 40.08 0.02 0.80 248.48 1197 1.45 

Sheep 45 8 0.28 8.28 1.13 18.56 0.02 0.37 115.07 173.88 0.29 

Goats 40 5 0.2 5.2 1.37 20.0 0.02 0.40 124.01 109.2 0.23 

Alpacas 65 8 0.28 8.28 1.13 26.81 0.02 0.54 166.22 173.88 0.34 

Buffalo 300 55 1 56 0.32 35.04 0.02 0.70 217.24 1176 1.39 

Swine 100 1.5 1 2.5 1.64 59.90 0.02 1.20 371.13 52.5 0.42 

Poultry n/a n/a n/a n/a 0.82 n/a n/a n/a n/a n/a 0.00323 

Formulas       A + C = D   

(A x E) 
*(365/1000) 

= F   F x G = H H x 310 = I D x 21 = J 
(I + J)/1000 

= K 

The values of GHG emissions for each type of livestock that comprise the LAC region 

are reported in final column of Table 4.  We apply these emissions estimates uniformly across all 

FPUs.  This homogeneity, which may indeed represent true GHG emissions values for livestock 

                                                            
18 From Table 10.10, 2006 IPCC: Emissions from Livestock and Manure Management 
19 From Table 10.10, value for Developing Countries was assumed, 2006 IPCC: Emissions from Livestock and 

Manure Management 
20 Manure methane emissions estimates are from Table 10.14 and 10.15, assuming warm/Latin America, 2006 

IPCC: Emissions from Livestock and Manure Management 
21 The units of the default IPCC values for nitrogen excretion rate in Latin America are in Kg N/ (1000 kg animal 

mass) a day.  Equation 10.30 was used from 2006 IPCC: Emissions from Livestock and Manure Management. 
22 Conversion factor of kg N excreted to kg N20 is based on the IPCC calculations that Cederberg et al. (2009) use 

for generalized pasture excretion.  In these calculations, 2% of the kg Nitrogen excreted by the animal in the 
form of manure was volatilized into kg N2O, or 0.02*kgN = kg N2O.  The value is the same as assuming a dry lot 
area for the default emissions factors for direct N2O in Table 10.21 of 2006 IPCC: Emissions from Livestock and 
Manure Management. 

23 This estimated emission is from Verge et al. (2009).    
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in LAC, will serve as placeholders at this juncture – future work will aim to generate more 

precise, FPU-specific estimates.      

5.  Results of Model Simulations 
 
5.1 IMPACT Model’s Baseline Simulation 
 
The baseline simulation is that currently reported by IFPRI (Rosegrant and Msangi 2009), which 

includes the recent, significant effects of current and future expected demand for biofuels.  This 

baseline predicts an array of supply/demand adjustments that lead to increases in real prices for 

most staple commodities over the next 20 years or so, and more gradual increases in the prices of 

animal products (especially beef).   Figure 5 and Figure 6 report these trends for selected 

commodities; increases in real food prices will have negative consequences for the poor in 

developing countries and policy actions anywhere in the world that put further upward pressure 

on food prices will only exacerbate this problem.  Recall that price signals in the IMPACT model 

are global in nature (i.e., all countries face identical border prices), but that FPUs within specific 

countries face prices that may be distorted by national agricultural or other policies.24   

Figure 5: Projected World Prices for Key Commodities--Baseline Scenario (US$/mt) 

 
Source: IMPACT model simulations. 

                                                            
24 The reader should also note that no bilateral or multi-lateral restrictions or preferences are imposed in 
international trade in the IMPACT model.  The model also does not address temporary or long-term trade 
restrictions associated with foot-and-mouth disease in cattle, or any other product quality issues.   
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Figure 6: Projected World Prices for Beef – Baseline Scenario (US$/mt) 

 
Source: IMPACT model simulations. 

The baseline simulation also produces estimates of all of the products produced in each 

of the FPUs throughout the world, including all of the FPUs that comprise the LAC region, and 

the land and water resources required to produce them.  We report here on a subset of the area 

and production results that are relevant for the issues we set out to address.  More specifically, 

we have selected 2030 as our ‘snapshot’ year for reporting on land clearing and as our ‘ending 

year’ for reporting GHG emissions that accumulate from 2010 (our ‘baseline year’) to 2030.     

Sources of growth in the baseline 
 

Before assessing the marginal effects of any policy affecting agricultural GHG emissions 

in LAC, it is important to know and to understand likely trends in global agriculture and the 

driving forces behind these trends.  Although LAC’s contribution to global food production is 

quite significant, farmers outside of LAC will always provide the majority of the world’s food 

supply, so global trends can mute or make more costly any policy effort to manage agricultural 

GHG emissions in LAC.   

When we look at the baseline trajectory of production to 2030, from the IMPACT model, 

we can identify the sources of growth (from extensification or intensification) for each region, 

and use it as an indicator of where more pressure will be put on land cover to meet future 

demands for food and feed, and which regions have underexploited the land-saving gains that 

could be achieved through increasing yield further.  As noted by FAO (2002), about 70% of crop 
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production growth to 2030 is be expected to come from yield growth; this is especially true in 

developing countries, where much of the yield potential has yet to be fully exploited.  This 

pattern largely holds at the global level (Figure 7).   

Figure 7:  Decomposition of Annual Average Rates of Cereal Production Growth to 2030 

(Global) 

Source: IMPACT model simulations. 

Africa is expected to have the highest rates of area expansion (reaching almost 1% p.a. 

growth), and Latin America ranks the next highest as a region.  This is in contrast with the EU 

countries and with both East and South Asia, where very high population densities amidst well-

established systems of irrigated agriculture have already exploited most of the area available for 

agriculture. Sub-Saharan Africa, by contrast, has exploited only about 2% of its irrigation 

potential and has much unexploited land that is suitable for agricultural – poor market linkages 

and infrastructure conditions continue to constrain the expansion of cultivated area and the 

modernization of agriculture in this region.    

Within LAC, the sources of future agricultural growth are somewhat more uniform 

(Figure 8).  That said, Chile and Argentina will likely have the highest rates of area expansion to 

2030, compared to countries like Colombia, where much area expansion is a more costly way to 

increase total than yield growth.   
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Figure 8: Decomposition of Annual Average Rates of Cereal Production Growth to 2030 
(Latin America) 

 
Source: IMPACT model simulations. 

Perhaps surprisingly, Brazil is likely to benefit disproportionally (vis-à-vis other 

countries in LAC) from yield growth; this is in part attributable to the very substantial 

investments made in agricultural research over the past several decades which is now fueling 

productivity increases, cost savings to farmers, and (for some crops and in some regions of 

Brazil) reductions in GHG emissions (Cerri 2009).  Other countries, such as Central America and 

the Caribbean, are starting from much lower yield levels for cereal crops and will likely rely 

relatively heavily on area expansion to increase output over the next two decades.   

Global demand growth and its impact on GHG emissions in Latin America 
 

Taking the baseline case of the IMPACT model, we can now examine the growth of 

agricultural GHG emissions in Latin America from 2010 to 2030, and try and attribute this 

growth to the demand-side drivers of change that are most dynamic within the world food 

economy over this period.  Recall that agricultural GHG emissions can arise from three sources: 

area expansion, crop production (on established and newly cleared lands), and livestock – all 

three of these sources are explicitly included in our calculations. 25  The final (shaded) row of 

                                                            

25 For data and methodologies used to calculate agricultural GHG emissions, see previous sections titled Estimating 
GHG Emissions Associated with Livestock Production in LAC, Greenhouse Gas Emissions Associated with 
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Table 5 reports the summary measures of GHG emissions: currently (2010), agriculture in LAC 

emits approximately 980 million tons of CO2 equivalent per year, this expected to decrease to 

946 million tons by 2020, and to approximately 871 million tons by 2030.   

Increasing demand for food, globally, exerts a ‘pull’ on agriculture in Latin America 

through the market forces that elicit ever-increasing levels of grain and livestock exports from 

the region, and which are fastest-changing in the emerging ‘giants’ of the global economic 

landscape – namely, China, India and Brazil.  To illustrate the impact of these countries’ food 

demand growth on GHG emissions from agriculture in LAC, a simple simulation was run in 

which we hold the socio-economic growth of a subset of these countries constant over the 2000-

2030 period, and examine the effects of how this modeler-imposed ‘slow-down’ in food and feed 

demand translates into lower agricultural expansion and production in LAC and fewer 

agricultural GHG emissions.  By doing this sequentially – such that food demand is ‘frozen’ for 

one, then two and finally all of the ‘BrIC26’ countries – we are able to derive the decomposition 

shown in the middle section of Table 5, below.  

Table 4: Decomposing Demand Drivers of Agricultural GHG Emissions in LAC (2010 to 
2030) 

 

Agricultural GHG Emissions in 
LAC 

(millions of tons CO2 eq./yr) 

Agricultural GHG Emissions 
(% of total LAC Agricultural Emissions) 

 2010 2020 2030 2010 2020 2030 
China 47.4 43.5 39.8 5% 5% 5% 
India 16.7 14.4 14.5 2% 2% 2% 
Brazil 10.0 13.8 12.6 1% 1% 1% 

Rest of the 
World 906.4 874.3 804.1 92% 92% 92% 

       Total LAC 980.4 946.0 871.0    Source: IMPACT simulations 

  

                                                                                                                                                                                                
Annual and Perennial Crop Production Activities and Estimating GHG Emissions Associated with Area 
Expansion in Agriculture in LAC. 

26 In this case, we deviate from the usual definition of ‘BRIC’ by leaving out Russia, in order to simplify the 
comparison.  
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Note that China has the largest share of the BrIC countries’ contribution to demand-

driven GHG emission growth in the LAC region, and (by 2030) is more than twice that of India 

and Brazil.  In aggregate, though, the BrIC countries account for only up to 8% of the LAC 

emissions growth over the simulation period; it is difficult to ‘blame’ the BrIC countries for 

fueling agricultural change and the resulting GHG emissions from agriculture in LAC.   

However, the fact that only approximately 1% of that is attributed to the fastest-growing LAC 

country (Brazil) illustrates how important China and India are in shaping the market dynamics of 

the world food market, especially over the medium term.   While the best policy response to this 

is not necessarily to put restrictions on trade of LAC products – there is obviously a need for a 

coordinated and global policy mechanism to account for the carbon contribution of agricultural 

products, so that appropriate labeling, pricing or other consumer-oriented policies can be 

instituted (globally) to persuade commodity brokers, food processors and (ultimately) consumers 

to consider the environmental externalities of their food consumption patterns when making 

choices.  

 Behind the summary GHG emissions numbers reported for the LAC region in Table 5 lay 

patterns and trends regarding the contributions of agricultural sub-sectors – land expansion, 

cropping activities and livestock production.  Table 6 reports the percentage contributions of 

these three sub-sectors to total agricultural GHG emissions for countries or groups of countries 

that comprise the LAC region, for 2010 and for 2030.   Note the very substantial contribution of 

livestock production activities to aggregate GHG emissions for virtually all LAC countries.  The 

calculations are straightforward – on average, beef cattle emit approximately 1.47 t CO2 eq 

head/year.27  For a Brazilian beef cattle herd of approximately 200 million, this translates into 

approximately 294 million tons of CO2 equivalent, each year.  Second, cropping activities make 

up a relatively small and temporally stable share of aggregate GHG emissions.  While area 

dedicated to cropping is larger than that dedicated to livestock production in most LAC 

countries, the per-hectare emissions tend to be low and can be negative for perennial tree crops 

during the establishment phase.28  Third, while the per-hectare contribution of land expansion is 

by far the highest-emitting sub-subsector (with emissions volumes reaching over 700 tons of 

                                                            
27 See previous section Estimating GHG Emissions Associated with Livestock Production in LAC for details.  
28 See previous section Greenhouse Gas Emissions Associated with Annual and Perennial Crop Production Activities 
for details.  
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CO2 eq./hectare in densely forested areas)29, the absolute number of hectares converted to 

agriculture is small in 2010 and declining thereafter, relative to the total acreage under plow or 

dedicated to pastures to sustain livestock herds.   

Table 5: Agricultural GHG Emissions, by Sub-Sector, 2010 and 2030 

 
Contribution of Sectors to Total GHG Emissions under Baseline (%) 

 
2010 2030 

 

Land 
Expansion 

Cropping 
Activity Livestock Land 

Expansion 
Cropping 
Activity Livestock 

Argentina 61% 6% 33% 44% 9% 47% 
Brazil 40% 6% 54% 26% 7% 67% 
Central America & 
Caribbean 59% 5% 36% 41% 7% 52% 
Central South 
America 51% 6% 44% 27% 7% 65% 
Chile 40% 7% 52% 18% 9% 73% 
Colombia 26% 4% 70% 10% 4% 85% 
Ecuador 50% 5% 45% 26% 6% 68% 
Mexico 34% 11% 55% 16% 12% 72% 
Northern South 
America 39% 7% 54% 18% 7% 75% 
Peru 56% 8% 36% 29% 11% 60% 
Uruguay 28% 6% 66% 8% 7% 85% 
 

5.2 Using the IMPACT Model to Assess the Effects of a Major Policy Change  
 
At this point, we put the IMPACT model to work on identifying the consequences of managing 

agriculture in LAC in ways that reduce GHG emissions.  There are many potential points of 

departure for such an exercise, some of which have already begun to gain traction in policy 

arenas.  For example, regional and national plans have been established or are being established 

to set aside forested and other areas (in part to retain the carbon fixed in native vegetation these 

areas contain), and to develop alternative land use and farming practices that can reduce the 

agricultural GHG emissions; e.g., Brazilian National Law for Climate Change (Lei n. 12,187) or 

the Action Plan for Preventing and Controlling Land Clearing and Vegetation Burning in the 

Savannahs  (Serviço Público Federal 2010).  Moreover, policy instruments to help secure the 
                                                            
29 See previous section Estimating GHG Emissions Associated with Area Expansion in Agriculture in LAC for details.  
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success of these action plans and law are being developed and tested, e.g., REDD+ (Nepstad 

2009).  All of these plans and laws will be costly to implement and will likely succeed to 

differing degrees in meeting their stated objectives.   

But what if they are successful?  What would be the consequences, intended and 

otherwise – locally, nationally and globally – of such successes, taken together?  For the most 

part, we do not know.  Local environmental successes are sometimes touted (e.g., reductions in 

deforestation rates in some parts of the Brazilian Amazon), but few are keeping track of even in 

local consequences, let alone broader consequences.  Informed policy action requires knowledge 

of all benefits and costs.  

To begin to explore the environmental and economic consequences of successfully 

managing agricultural GHG emissions, we focus on a one aspect of agricultural change that (on a 

per-hectare basis) is the most important contributor to GHG emissions – land clearing for 

agriculture.  Moreover, to fully assess the consequences of success, we model complete success – 

i.e., we use the IMPACT model to establish ‘upper bound,’ site-specific estimates of the total 

agricultural GHG emissions reductions that could be achieved by a complete halt to the 

expansion of agriculture into forested and other areas containing natural vegetation.  In the 

process, we will also discover what the agricultural and other consequences of such a successful 

land use policy would be.  While there is no reason to believe (or to hope) that such a policy 

would be successful throughout LAC in the near term, policy action is being taken in most 

countries in LAC to reduce or to manage the location of the expansion of the agricultural 

frontier.  Therefore, while the policy experiment might seem draconian, it takes as its point of 

departure as an ongoing effort throughout the region to manage agriculture-led land clearing.   

To be more specific, we use the IMPACT model to simulate the effects of a complete and 

effective ban on the expansion of area dedicated to agriculture in each of the FPUs within the 

IMPACT model that lie within the tropical forest swath running from the Yucatan Peninsula to 

the bottom of the Amazon Forest.30  Within each of the FPUs lying in this tropical zone, the land 

dedicated to agriculture in the base year of the simulation (2010) may remain in use, and product 

mixes and production technologies are free to respond to economic incentives and to water 

availability.  All of the remaining spatial units of agricultural production in the model (within 

                                                            
30 Beef cattle and milk cow herds are also ‘frozen’ at 2010 levels in each of the FPUs that are in tropical areas of 

LAC.  
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and outside of LAC) are allowed to adjust cultivated area, product mix and production 

technology choices in response to changes in relative prices brought about by the simulated ban 

on area expansion in the selected tropical zone within LAC.   

 The policy simulation effectively halted the expansion of the agricultural frontier in the 

tropical areas of the LAC region.  Total gross ‘savings’ of natural vegetation in 2030 amounted 

to approximately 3,339,000 hectares (Table 5).  Approximately one third of these gross savings 

occurred in the FPUs that comprise the Amazon forest; the remaining two thirds of these savings 

are distributed throughout tropical LAC, but are heavily concentrated in the northern ‘rim’ of 

South America surrounding the Amazon and in the Yucatan Peninsula and Central America.  

The reader will note that the ban on land clearing in tropical areas promotes increased land 

clearing (vis-à-vis the baseline simulation) in non-tropical areas in LAC of approximately 88,000 

hectares (from Table 7, below).31  Hence, the net ‘savings’ to LAC in terms of cleared land is 

approximately 3,251,000 hectares.   

Table 6: Agricultural area and GHG emissions in 2030, baseline and no expansion policy 

 
Change in Agricultural Area  

(thousands of hectares) 
Change in Ag GHG Emissions 
(millions of tons CO2 eq./yr) 

 
2030 

Baseline 

2030             
No-

Expansion 
Change 2030 

Baseline 

2030            
No-

Expansion 
Change 

Argentina 34,876 34,888 12 164 165 1 
Brazil 57,360 57,011 (349) 407 395 (12) 
Central America & 
Caribbean 9,786 8,473 (1,313) 74 34 (40) 
Central South 
America 6,965 6,707 (258) 41 33 (7) 
Chile 2,294 2,296 2 20 20 0 
Colombia 3,804 3,537 (268) 47 36 (11) 
Ecuador 2,790 2,519 (271) 20 12 (8) 
Mexico 19,399 19,106 (292) 28 20 (8) 
Northern South 
America 2,417 2,145 (273) 29 18 (11) 
Peru 3,593 3,351 (242) 21 14 (7) 
Uruguay 1,006 1,007 0 20 20 0 
       Total LAC 144,291 141,040 (3,251) 871 766 (105) 

                                                            
31 As the reader will see below, land-clearing activities outside LAC are also influenced by the ban on area 

expansion in LAC.  Future work will focus on locating and measuring these important extra-LAC effects.   
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Source: IMPACT simulations 

In addition to this, we see (from Table 7) that the net savings in terms of GHG emissions 

from agriculture is over 100 million tons of CO2 equivalent, just in the year 2030.  But since the 

emissions from agricultural (and other) activities have a cumulative effect over time – we want 

to look at the total savings in GHG emission from agriculture over the simulation time horizon.  

Table 8 reports the results of these calculations (first three columns) and examines the relative 

contributions of land clearing, cropping activity and livestock production to these GHG 

emissions ‘savings’ (final set of columns).    

Table 7: Cumulative Agriculture GHG Emissions (2010-2030), Baseline and No Expansion 
Policy Scenario 

 
Cumulative Ag GHG Emissions 
(millions of tons CO2 equivalent) 

Contribution to Emissions 
Reduction 

(thousands of tons CO2 equivalent) 

 
2010-2030 
Baseline 

2010-2030             
No-

Expansion 
Change Land 

Clearing 
Crop 

Activity Livestock 

Argentina 3,892 3,903 11 3,737 113 6,777 
Brazil 8,909 8,601 (308) (270,204) (1,589) (36,092) 
Central America & 
Caribbean 1,599 761 (839) (735,833) (7,490) (95,473) 
Central South 
America 889 734 (156) (131,308) (1,372) (22,947) 
Chile 418 420 1 294 11 764 
Colombia 979 763 (216) (143,489) (1,056) (70,959) 
Ecuador 434 257 (177) (143,030) (753) (33,121) 
Mexico 620 437 (183) (142,521) (2,636) (38,324) 
Northern South 
America 606 398 (208) (145,811) (2,312) (60,117) 
Peru 462 300 (162) (138,899) (958) (22,332) 
Uruguay 399 400 1 50 7 1,188 
Total LAC 19,209 16,973 (2,236) (1,847,015) (18,036) (370,637) 

Source: IMPACT simulations 

In terms of the total savings in agricultural GHG emissions over the simulation period, 

we see that the no-expansion policy realizes a total savings of approximately 2.2 billion tons of 

CO2 equivalent over the 2010-2030 period.  This is a very considerable volume of GHG.  Also 

noteworthy is the very different contributions across LAC countries of area expansion, cropping 
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and livestock activities to these reduced emission flows.  As expected, in Brazil area expansion 

(mainly clearing in the Amazon forest) is the largest single contributing factor.  However, in 

Colombia, reductions in emissions from cattle ranching contribute the largest share of GHG 

emissions reductions.   

The amounts and types of agricultural products that are exported by LAC countries are 

also affected by the ban on area expansion in tropical FPUs in the region, but marginal effects for 

the region as a whole are small compared with the dramatic shift in trade patterns that are 

expected to take place over the next two decades even without taking the extreme policy action 

to protect forests included in our experiment.  Figure 9 depicts the net export levels for all of 

Latin America for soybeans, maize, beef and sugar under the baseline case, as well as under the 

simulated ban on deforestation.    

Figure 9: Net Trade in Selected Commodities, LAC Region 

 
Source: Authors’ calculations. 
 

Note that only the maize exports increase once the area expansion ban is in place (after 

2010), reflecting the fact that as prices rise, producers allocate more land and other resources to 

this now more profitable crop.  The decrease in export levels in other crops reflects the decline in 

the area dedicated to soybeans and (especially) sugar and beef.  By-and-large, however, the LAC 
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region remains a major exporter of all these commodities, even with the ban on area expansion in 

place.   

Figure 10: Net Trade in Selected Commodities, Central America and the Caribbean 

 
 Source: Authors’ calculations. 

 

The same is not true, however, for Central America and the Caribbean (Figure 10).  We 

note, immediately, that this region is a net importer for most commodities, except sugar – which 

sees a decline in net exports, as was seen elsewhere in LAC.  We also see, though, that the net 

imports for maize decrease, which is along the same trend as that seen for the other maize-

exporting regions of LAC, and reflects the fact that maize production is increasing in the no-

expansion scenario, as well.   

While the effects of the ban on area expansion led to fairly homogeneous effects on trade 

patterns within LAC (Central America and the Caribbean being the notable exception), the 

economic effects of the ban varied quite significantly across the region.  The simulated ban on 

area expansion in tropical FPUs reduced most, but not all, agricultural activities in these FPUs 

from what they would have been (as predicted by the baseline simulation).  The implications of 

the area expansion ban for total agricultural GDP in the tropical FPUs are clearly negative and 

large.  For example, the gross value of agricultural production in 2030 in the Amazon region is 
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approximately $3.4 billion lower than in the (unconstrained) baseline; for the tropical FPUs 

taken as a whole, the figure is approximately $12.7 billion (see final two sets of columns of 

Table 9).  This decline is partially offset by increases in the gross value of agricultural 

production in non-tropical FPUs in LAC of approximately $3.4 billion; some of this increase is 

attributable to area expansion, but most of it is attributable to changes in product mix in these 

FPUs.  Therefore, the overall net effect (in terms of the decline in the gross value of agricultural 

production) for LAC is approximately $9.3 billion.   
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Table 8: Cultivated Area & Gross Value of Agriculture in 2030, Baseline & Policy 
Simulation  

 

 Total Agricultural Area  
(Thousands of Hectares)  

 Total Gross Value of Agriculture 
(Billions of 2000 USD)  

FPUs 
Baseline 

2030 
Simulation 

2030 Change 
Baseline 

2030 
Simulation 

2030 Change 
Amazon Brazil 4,720 4,303 (417) 13.44 12.29 (1.15) 

Central Amazon 2,276 2,016 (260) 4.53 3.93 (0.60) 
Amazon Colombia 196 180 (16) 1.26 1.12 (0.14) 

Amazon Peru 2,479 2,236 (242) 8.87 7.80 (1.08) 
Amazon Ecuador 516 449 (67) 2.74 2.37 (0.38) 
Total Amazon 10,187 9,185 (1,002) 30.85 27.50 (3.35) 

Caribbean 1,988 1,740 (248) 7.21 6.33 (0.88) 
Central America 5,529 4,792 (737) 17.58 15.49 (2.09) 

Cuba 1,519 1,290 (229) 4.67 4.02 (0.65) 
 Northern South America 286 263 (23) 0.96 0.78 (0.17) 

Northwest Colombia 2,726 2,530 (196) 13.38 12.35 (1.03) 
Northwest Ecuador 2,274 2,070 (205) 10.44 9.33 (1.11) 
Orinoco Colombia 882 827 (56) 5.47 5.11 (0.36) 
Northern Orinoco 2,131 1,882 (249) 9.69 8.27 (1.42) 

Yucatan Caribbean 750 652 (99) 2.35 2.08 (0.27) 
Yucatan Mexico 5,517 5,221 (295) 20.39 19.01 (1.38) 

Total Tropical LAC 33,790 30,451 (3,339) 122.99 110.27 (12.71) 
Coastal Chile 2,294 2,296 2 17.82 17.97 0.14 

Central Mexico 10,771 10,772 1 34.47 34.80 0.33 
Northeast Brazil 6,451 6,461 10 16.69 16.95 0.27 

Parana, Argentina 16,899 16,905 6 25.27 25.49 0.22 
Parana, Brazil 24,185 24,223 38 58.38 59.27 0.89 
Central Parana 4,689 4,691 2 7.45 7.51 0.06 
Coastal Peru 1,114 1,115 1 4.12 4.16 0.04 

Rio Colorado, Argentina 630 630 1 3.38 3.42 0.04 
Rio Grande, Mexico 968 969 1 4.93 5.00 0.08 

Salada Tierra, Argentina 17,306 17,312 6 25.35 25.57 0.22 
San Francisco, Brazil 12,001 12,016 15 48.87 49.45 0.59 

Tierra, Argentina 40 40 0 1.04 1.06 0.02 
Tocantins, Brazil 3,833 3,836 2 8.88 9.01 0.13 
Northern Mexico 2,143 2,144 1 8.71 8.82 0.11 
Uruguay-Brazil 6,170 6,172 2 14.22 14.41 0.19 

Uruguay  1,006 1,007 0 3.52 3.57 0.04 
Total Non-Tropical LAC 110,501 110,589 88 283 286 3.369 
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At country level, the economic effects of the ban on area expansion in the tropics is more 

muted, in part because most countries in the region have ongoing and expanding agricultural 

activities in non-tropical FPUs and these areas generally profited from the no-expansion policy.  

That said, at country level the effects of the ban were not uniform.  Table 10 presents for 2030 a 

comparison of total gross value of agriculture for the baseline and for the policy simulation, the 

change in gross agricultural production value attributable to the no-expansion policy, and the 

percentage of total agricultural GDP that change represented in 2030.  While most countries with 

tropical FPUs suffered some declines in the gross value of agricultural output, not all did; Brazil, 

which suffered the largest decline in cleared area in the Amazon (416,000 hectares by 2030) 

actually benefited from the ban because other FPUs within Brazil (e.g., the Parana and San 

Francisco FPUs) expanded agricultural area and altered product mix in ways that overcame the 

‘losses’ in the Amazon FPU.  Other countries or groups of countries were not so fortunate.  In 

absolute terms, Central America & Caribbean suffered the most significant decline in absolute 

agricultural gross value.  Colombia, Ecuador, Mexico, Northern South America and Peru each 

lost between 1 and 1.6 billion US$ as a consequence of the ban on area expansion.  The largest 

proportional loss was felt by Ecuador, which suffered a 1.7% decline in total agricultural gross 

value, which represents almost a quarter of the agricultural value added within the economy. For 

other regions, however, the relative size of the shock is much smaller. 
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Table 9: Gross Value of Agriculture, Baseline and Effects of No Expansion Policy 

 

Total Gross Value of Agriculture 
(Billions of USD) 

% of Total 
Agricultural 
GDP 2030 

Agricultural 
value-added (as 

% of total 
GDP)* 

 

Baseline 
2030 

Simulation 
2030 

Change 
 

Argentina 55 56 0.50 0.06% 10% 
Brazil 160 161 0.91 0.04% 6% 
Central America & 
Caribbean 32 28 (3.89) -1.24%   
Central South America 12 11 (0.54) -0.80%   
Chile 18 18 0.14 0.04% 4% 
Colombia 20 19 (1.53) -0.37% 9% 
Ecuador 13 12 (1.49) -1.71% 7% 
Mexico 20 19 (1.38) -0.13% 4% 
Northern South America 11 9 (1.59) -0.52%   
Peru 13 12 (1.04) -0.41% 7% 
Uruguay 4 4 0.04 0.07% 11% 
* Note: these data are from WDI, however values for aggregated IMPACT regions are not available 

As indicated at the outset of this DP, at global level there is concern about the effects on 

world food prices of managing agriculture to reduce GHG emissions, and there is skepticism 

regarding the potential for policy action to reduce emissions in LAC without increasing 

emissions elsewhere on the planet to meet food needs.  We address these issues in turn.   

We can use the IMPACT model to assess the effects of the no-expansion policy in 

tropical LAC on global-level market prices, which drive the trade and production response of the 

model, in regions outside of Latin America.  
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Figure 11: World Commodity Price Changes Associated with No-Expansion Scenario 

 
Source: IMPACT simulations. 

Figure 11 shows the effects of the ban on the expansion of agricultural area in tropical 

LAC on world prices for beef, soybeans, sugar and maize.  Soybean and maize price changes 

associated with the simulated ban on area expansion are less than one-half of one percent higher 

than baseline prices in 2030, and the price changes for sugar are also small (about 1.5% higher 

than baseline 2030 levels).  Beef prices, however, increase significantly more (about 4% above 

baseline prices in 2030), and stand out in this comparison given the much higher value of beef, 

compared to the other crop commodities.  Overall, the price effects associated with the area 

expansion ban are relatively small.  

The simulation results for one key product (beef) explain why world price changes 

associated with the considerable decline in cultivated area in tropical LAC (over 3.3 million 

hectares) are small.   As one would expect, all of the countries containing the targeted tropical 

FPUs report significant declines in beef exports – e.g., net beef exports in 2030 from Colombia 

decline by 622 percent vis-à-vis what would have been exported in 2030 under the baseline 

scenario.32  However, in response to increases in beef prices, other countries either increase the 

supply of beef (e.g., Argentina increased beef exports by 15 percent) or decreased net imports 

(e.g., China reduced beef imports by 26 percent).  Similar supply/demand adjustments occur 

                                                            
32 See The Effects of Banning Agricultural Area Expansion in LAC’s Tropical Zones: An IMPACT Model Simulation 

(Msangi et al 2010) for details.   
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globally for other commodities, as well, and tend to dampen the price effects of the area 

expansion ban imposed on the tropical region of LAC. 

This is one example of ‘leakage’ that results from market-mediated price transmission, 

which causes agents in regions outside the policy target area to respond in ways that offset the 

effect of the policy. In this set of simulations, we have not calculated the global agricultural 

GHG emission changes that would be implied by these changes, due to lack of (time and) data on 

the appropriate GHG coefficients to apply to all the 281 FPUs in IMPACT model.  This would 

have illustrated what the carbon leakage would have been, from only imposing a carbon-focused 

policy in one region of the world – and is analogous with other policies that try and address 

climate mitigation on a regional scale.  To illustrate – one of the topics being debated currently 

on biofuels policy in the US, is how to account for the carbon leakage transmitted through global 

fuel and feedstock markets that might induce ‘indirect land use changes’ (iLUC) that offset the 

carbon-savings of switching to a non-fossil-based fuel.  Searchinger et al. (2008) brought this 

issue into clear focus, and has stimulated a debate over the measurement of iLUC and how to 

account for indirect effects when designing low-carbon fuel policies, such as the one currently in 

force in the state of California (Farrell and Sperling, 2007). As was illustrated by a recent study 

commissioned by the European Commission (Edwards et al., 2010) – it is a complex issue to 

address and reach agreement upon, given the wide variety of modeling methods that can be used 

to measure market impacts and land use changes. 

In this study, we have employed one global model, IMPACT, in order to illustrate the 

possible ‘rebound’ or ‘leakage’ that can occur when restrictions on production (or the 

technologies of production) are imposed in a particular region that is well-connected to other 

regions through global trade.  The importance of Latin America in the global food economy will 

only grow as we move towards 2030, and the influences of other regions and their increasing 

demand for the agricultural exports coming from the LAC region will serve as a stronger pull for 

agricultural production and land, which has implications for the design, implementation and cost 

of national and regional environmental policies.  

Finally, improving child health is an agreed-upon international objective and hence 

merits attention in this brief.  In the IMPACT model, childhood malnutrition is determined 

(essentially) by the cost of obtaining calories to consumers.  By this metric, the global effect of 

the simulated ban on area expansion in LAC on child malnutrition is small, but not insignificant 
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– the number of malnourished children is expected to increase by about 50,000 in developing 

countries, mostly in Asia.  However, the ban on area expansion will likely have negative income 

and employment effects within topical FPUs in LAC that are not addressed in the IMPACT 

model; and these effects may lead to local increases in childhood malnutrition, especially within 

poorer households.   

6.  Conclusions and their Policy Implications 
 
Several important conclusions emerge from the IMPACT model baseline simulation, and from 

the comparison of the baseline results with those of the policy simulation that banned area 

clearing for agriculture in tropical LAC, and some of these may have important policy 

implications.  

First, agriculture in LAC contributes very substantially to GHG emissions.  Emissions in 

2010 were approximately 980 million metric tons of CO2 eq. and are expected to fall to 

approximately 871 million tons per year by 2030.  In most countries, the majority of GHG 

emissions are from livestock and that share will likely increase throughout LAC over the next 20 

years.   

Second, the net GHG emissions that could be avoided in LAC by a complete and effective 

ban on agriculture-led land clearing in tropical areas of the region are quite substantial.  For the 

region as a whole, GHG emissions could be reduced by approximately 2.2 billion tons of CO2 

eq. over the 2010-2030 period.  Most reductions would come in the form of reduced land 

clearing, but reductions in (especially) livestock production and cropping activities would also 

contribute to emissions reductions.   

Third, these avoided GHG emissions may be quite valuable, so it may be possible to tap 

REDD+ and other market-based mechanisms to cover some of the costs of restricting 

agricultural expansion to reduce GHG emissions.  However, the wide range of market prices for 

CO2 over the past five years or so make the task of valuing GHG emissions challenging and the 

results uncertain. 33   That said, at the average price of CO2 equivalent OTC transactions in LAC 

                                                            

33 For example, the Chicago Climate Change was trading at 4.40 t/CO2 equivalents in 2008 and is currently no 
longer in operation.  European markets have fared better, with carbon equivalents trading at $15.20 in 2009.  We 
adopt a conservative approach using a combination of regulated and voluntary carbon emission mechanisms for our 
estimation purposes.  See Vosti et al. (2010) for more explanation on this topic. 
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in 2009 (roughly US$ 4.30/t CO2 eq.), our estimates suggest such compensation schemes could 

cover well over 1/2 of the value of the losses in agricultural output in 2030 in the tropics 

associated with the ban.   

Fourth, any attempt to manage agricultural GHG emissions in LAC may cause 

agricultural GHG emissions to increase in other regions of the world.  While we have not yet 

measured these ‘leakage’ effects outside of LAC, our results suggest that it will be challenging to 

convince donors and others financing policy actions to reduce GHG emissions in LAC that such 

‘leakage’ will not occur.   

Fifth, the key position of Latin America as a supplier of agricultural products to the rest 

of the world (and particularly the fast-growing economies of Asia) make the ‘rebound’ effects of 

instituting a region-focused policy more pronounced than it would otherwise be if LAC were 

mainly an importer that was driving the demand of other regions.   

Sixth, the local costs of a ban on agricultural expansion would be substantial.  Vis-à-vis 

the baseline, the gross value of forgone agricultural production for all of the tropical FPUs would 

be approximately US$ 12.7 billion in 2030.  But these costs would not be born uniformly across 

the Latin American countries.  For example, in 2030, Central America & Caribbean would face 

losses of about US$ 3.9 billion and Ecuador would lose 1.7 percent of agricultural GDP, while 

Argentina would gain US$ 0.5 billion and Brazil (which would lose over 400,000 hectares of 

agricultural area by 2030, primarily in the Amazon) would actually gain about US$ 0.9 billion 

from the area expansion ban.  This non-uniform distribution across FPUs (and across countries) 

may call for spatially non-uniform policies for administering the land clearing ban or for 

compensating ‘local’ stakeholders, or both.     

Seventh, substantial shifts in trading patterns for maize and soybeans are predicted to 

occur in the region in the absence of the ban on area expansion; the marginal effects of the ban 

on these patterns for the countries that comprise the tropics of LAC, and for the region as a 

whole, would not be great.   That said, the ban on the expansion of agricultural lands would 

‘speed up’ expected shifts in trade patterns in most cases.  However, the ban could cause net 

exports of beef and sugar from the region to fall, but these effects would differ by sub-region and 

country; e.g., net sugar exports would decline markedly from the Central America and the 

Caribbean, but increase from Brazil.    
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Finally, the overall global effects of banning agriculture-led land clearing in tropical 

LAC on food production and food prices would be relatively small, and the effects on childhood 

malnutrition would also be small but not insignificant.  Our analysis highlights the ability of the 

global food production system to adjust to the reduction in area available for agriculture by 

changing product mix, increasing productivity in areas currently under plow, and by expanding 

cultivated area in other regions of the world.  While we have not made it explicit in our analysis, 

we also know that these adjustments are governed by site-specific characteristics such as 

production costs and water availability.  While some might expect to see more dramatic effects 

resulting from a ban on area expansion in environmentally sensitive tropical regions, this 

analysis shows that global food demand and food trade trends adjust to policy-induced changes 

in relative prices, further muting the effects of the ban on area expansion in LAC.   
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Technical Appendix: Greenhouse Gas Emissions from Agricultural 
Activities in Brazil, by Commodity and by Production Technology 
 
 

Table 10: Regional Crop-Specific Greenhouse Emissions for Brazil 

Crop Regions in 
Brazil34 

Irrigated vs. 
Rainfed 

Emissions 
flows 

associated 
with fertilizer 
application in 

CO2 
eq./ha/year,35 

CO2 
equivalent 

per year 
associated 

with 
irrigation36 

Range of SOC 
sequestration or 

emissions, 
rotation crop 

systems, -0.627 
to +0.68737 

Range of yearly net flow of 
CO2 equivalent per hectare of 

cropland38 

sequest emit Low39 High40 Average
41 

Cotton 

North 
rainfed 0.00 0 0 0 0 0 n/a 

irrigated 0.00 0 0 0 0 0 n/a 

Southeast 
rainfed 0.93 0 -0.627 0.687 0.30 1.62 1.0 

irrigated 0.93 0.15 -0.627 0.687 0.30 1.62 1.0 

Northeast 
rainfed 0.49 0 -0.627 0.687 -0.14 1.17 0.5 

irrigated 0.49 0.15 -0.627 0.687 0.01 1.32 0.7 

South 
rainfed 1.09 0 -0.627 0.687 0.46 1.78 1.1 

irrigated 1.09 0.15 -0.627 0.687 0.61 1.93 1.3 
center 
west 

rainfed 0.89 0 -0.627 0.687 0.26 1.58 0.9 
irrigated 0.89 0.15 -0.627 0.687 0.41 1.73 1.1 

avg. input 
rainfed 0.82 0 -0.627 0.687 0.19 1.50 0.8 

irrigated 0.82 0.15 -0.627 0.687 0.34 1.65 1.0 

Rice 

North 

upland rainfed 0.08 0 -0.627 0.687 -0.55 0.77 0.1 
upland 

irrigated 0.08 0.15 -0.627 0.687 -0.55 0.77 0.1 

flooded 4.10 0.15 0 0 0 0 4.3 

Southeast 
upland rainfed 0.30 0 -0.627 0.687 -0.33 0.99 0.3 

upland 
irrigated 0.30 0.15 -0.627 0.687 -0.33 0.99 0.3 

                                                            
34 There are 5 listed regions in Brazil: North, Northwest, Centre West, Southeast, and South.   
35 Estimates of the amounts of fertilizer application were obtained from Table 14, Fertilizer use by crop in Brazil 

(FAO 2004) 
36 Obtained from Soil Management Concepts and Carbon Sequestration in Cropland (Follet 2001) 
37  Range obtained from Microbiological parameters as indicators of soil quality under various soil management 

and crop rotation systems in southern Brazil (Franchini et al. 2007), conventional tillage with crop rotation. 
38 This is the summation of fertilizer application, irrigation and sequest/emit.  The midpoint of the low 

(sequestered) and high (emission) estimation is listed as average.  This amounts to soil emissions of 0.03 t CO2 
eq./ha/yr.  This component of the estimation process will need to be revisited in the next phase of work.     

39 Low = fertilizer emissions + irrigation emissions + SOC sequestration 
40 High = fertilizer emissions + irrigation emissions + SOC emissions 
41 Average = (Low + High)/2 
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flooded 4.10 0.15 0 0 0 0 4.3 

Northeast 

upland rainfed 0.15 0 -0.627 0.687 -0.48 0.84 0.2 
upland 

irrigated 0.15 0.15 -0.627 0.687 -0.33 0.99 0.3 

flooded 4.10 0.15 0 0 4.25 4.3 

South 

upland rainfed 0.35 0 -0.627 0.687 -0.27 1.04 0.4 
upland 

irrigated 0.35 0.15 -0.627 0.687 -0.12 1.19 0.5 

flooded 4.10 0.15 0 0 4.25 4.3 

center 
west 

upland rainfed 0.29 0 -0.627 0.687 -0.34 0.97 0.3 
upland 0.29 0.15 -0.627 0.687 -0.19 1.12 0.5 
flooded 4.10 0.15 0 0 4.25 4.3 

avg. input 
across 
Brazil 

upland rainfed 0.25 0 -0.627 0.687 -0.38 0.94 0.3 
upland 

irrigated 0.25 0.15 -0.627 0.687 -0.23 1.09 0.4 

flooded 4.10 0.15 0 0 4.25 4.3 

Potato 

North 
rainfed 0.00 0 0 0 0 0 n/a 

irrigated 0.00 0 0 0 0 0 n/a 

Southeast 
rainfed 1.27 0 -0.627 0.687 0.64 1.95 1.3 

irrigated 1.27 0.15 -0.627 0.687 0.64 1.95 1.3 

Northeast 
rainfed 0.66 0 -0.627 0.687 0.04 1.35 0.7 

irrigated 0.66 0.15 -0.627 0.687 0.19 1.50 0.8 

South 
rainfed 1.41 0 -0.627 0.687 0.78 2.10 1.4 

irrigated 1.41 0.15 -0.627 0.687 0.93 2.25 1.6 
center 
west 

rainfed 1.23 0 -0.627 0.687 0.60 1.92 1.3 
irrigated 1.23 0.15 -0.627 0.687 0.75 2.07 1.4 

avg. input 
rainfed 1.32 0 -0.627 0.687 0.70 2.01 1.4 

irrigated 1.32 0.15 -0.627 0.687 0.85 2.16 1.5 

Coffee 
(establis

hed 
plantatio

n) 

North 
rainfed 0.26 0 -0.627 0.687 -0.37 0.95 0.3 

irrigated 0.26 0.15 -0.627 0.687 -0.37 0.95 0.3 

Southeast 
rainfed 1.04 0 -0.627 0.687 0.41 1.73 1.1 

irrigated 1.04 0.15 -0.627 0.687 0.41 1.73 1.1 

Northeast 
rainfed 0.54 0 0 0 0.54 0.5 

irrigated 0.54 0.15 0 0 0.69 0.7 

South 
rainfed 1.28 0 0 0 1.28 1.3 

irrigated 1.28 0.15 0 0 1.43 1.4 
center 
west 

rainfed 0.99 0 0 0 0.99 1.0 
irrigated 0.99 0.15 0 0 1.14 1.1 

avg. input 
rainfed 0.97 0 0 0 0.97 1.0 

irrigated 0.97 0.15 0 0 1.12 1.1 

Coffee 
(newly 

establish
ed 

North 
rainfed 1.54 0 -5.6 -4.06 -4.0 

irrigated 0.26 0.15 -5.6 -5.19 -5.2 

Southeast 
rainfed 1.04 0 -5.6 -4.56 -4.6 

irrigated 1.04 0.15 -5.6 -4.4 -4.4 
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plantatio
n)42 Northeast 

rainfed 0.54 0 -5.6 -5.06 -5.1 
irrigated 0.54 0.15 -5.6 -4.91 -4.9 

South 
rainfed 1.28 0 -5.6 -4.32 -4.3 

irrigated 1.28 0.15 -5.6 -4.17 -4.2 
center 
west 

rainfed 0.99 0 -5.6 -4.61 -4.6 
irrigated 0.99 0.15 -5.6 -4.46 -4.5 

avg. input 
rainfed 0.97 0 -5.6 -4.63 -4.6 

irrigated 0.97 0.15 -5.6 -4.48 -4.5 

Sugar 
cane 
with  

residue 
burning43 

North 
rainfed 0.17 0 -0.627 0.687 -0.46 0.85 0.2 

irrigated 0.17 0.15 -0.627 0.687 -0.46 0.85 0.2 

Southeast 
rainfed 0.59 0 -0.627 0.687 -0.04 1.27 0.6 

irrigated 0.59 0.15 -0.627 0.687 -0.04 1.27 0.6 

Northeast 
rainfed 1.82 0 -0.627 0.687 1.20 2.51 1.9 

irrigated 1.82 0.15 -0.627 0.687 1.35 2.66 2.0 

South 
rainfed 2.21 0 -0.627 0.687 1.58 2.90 2.2 

irrigated 2.21 0.15 -0.627 0.687 1.73 3.05 2.4 
center 
west 

rainfed 2.08 0 -0.627 0.687 1.45 2.77 2.1 
irrigated 2.08 0.15 -0.627 0.687 1.60 2.92 2.3 

avg. input 
rainfed 2.05 0 -0.627 0.687 1.42 2.73 2.1 

irrigated 2.05 0.15 -0.627 0.687 1.57 2.88 2.2 

Sugar 
cane 

without 
residue 
burning 

North 
rainfed 0.17 0 -0.627 0.687 -0.46 0.85 0.2 

irrigated 0.17 0.15 -0.627 0.687 -0.46 0.85 0.2 

Southeast 
rainfed 0.59 0 -0.627 0.687 -0.04 1.27 0.6 

irrigated 0.59 0.15 -0.627 0.687 -0.04 1.27 0.6 

northeast 
rainfed 0.31 0 -0.627 0.687 -0.32 1.00 0.3 

irrigated 0.31 0.15 -0.627 0.687 -0.17 1.15 0.5 

South 
rainfed 0.69 0 -0.627 0.687 0.07 1.38 0.7 

irrigated 0.69 0.15 -0.627 0.687 0.22 1.53 0.9 
center 
west 

rainfed 0.56 0 -0.627 0.687 -0.06 1.25 0.6 
irrigated 0.56 0.15 -0.627 0.687 0.09 1.40 0.7 

avg. input 
rainfed 0.53 0 -0.627 0.687 -0.10 1.22 0.6 

irrigated 0.53 0.15 -0.627 0.687 0.05 1.37 0.7 

Beans 

North 
rainfed 0.03 0 -0.627 0.687 -0.59 0.72 0.06 

irrigated 0.03 0.15 -0.627 0.687 -0.59 0.72 0.06 

Southeast 
rainfed 0.11 0 -0.627 0.687 -0.52 0.79 0.1 

irrigated 0.11 0.15 -0.627 0.687 -0.52 0.79 0.1 

Northeast 
rainfed 0.06 0 -0.627 0.687 -0.57 0.75 0.1 

irrigated 0.06 0.15 -0.627 0.687 -0.42 0.90 0.2 

South 
rainfed 0.13 0 -0.627 0.687 -0.50 0.81 0.2 

irrigated 0.13 0.15 -0.627 0.687 -0.35 0.96 0.3 
center 
west 

rainfed 0.11 0 -0.627 0.687 -0.52 0.79 0.1 
irrigated 0.11 0.15 -0.627 0.687 -0.37 0.94 0.3 

avg. input 
rainfed 0.08 0 -0.627 0.687 -0.55 0.76 0.1 

irrigated 0.08 0.15 -0.627 0.687 -0.40 0.91 0.3 

                                                            
42 Rate of 1.33 tonne biomass accumulation for Arabica coffee saplings (Moraes et al. 2010) 
43 Emissions include 1.515 t CO2eq/ha/yr related to burning practices, from Wang et al. (2007) 
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Citrus 
(establis

hed 
plantatio

n)44 

North 
rainfed 0.13 0 0 0 0.163 0.2 

irrigated 0.13 0.15 0 0 0.163 0.2 

Southeast 
rainfed 0.51 0 0 0 0.539 0.5 

irrigated 0.51 0.15 0 0 0.539 0.5 

Northeast 
rainfed 0.26 0 0 00 0.26 0.3 

irrigated 0.26 0.15 0 0 0.41 0.4 

South 
rainfed 0.62 0 0 0 0.62 0.6 

irrigated 0.62 0.15 0 0 0.77 0.8 
center 
west 

rainfed 0.48 0 0 0 0.48 0.5 
irrigated 0.48 0.15 0 0 0.63 0.6 

avg. input 
rainfed 0.48 0 0 0 0.48 0.5 

irrigated 0.48 0.15 0 0 0.63 0.6 

Citrus 
(newly 

establish
ed 

plantatio
n)45 

North 
rainfed 0.13 0 -6.6 -6.47 -6.5 

irrigated 0.13 0.15 -6.6 -6.32 -6.3 

Southeast 
rainfed 0.51 0 -6.6 -6.09 -6.1 

irrigated 0.51 0.15 -6.6 -5.94 -5.9 

Northeast 
rainfed 0.26 0 -6.6 -6.34 -6.3 

irrigated 0.26 0.15 -6.6 -6.19 -6.2 

South 
rainfed 0.62 0 -6.6 -5.98 -6.0 

irrigated 0.62 0.15 -6.6 -5.83 -5.8 
center 
west 

rainfed 0.48 0 -6.6 -6.12 -6.1 
irrigated 0.48 0.15 -6.6 -5.97 -6.0 

avg. input 
rainfed 0.48 0 -6.6 -6.12 -6.1 

irrigated 0.48 0.15 -6.6 -5.97 -6.0 

Soybeans 

North 
rainfed 0.60 0 -0.627 0.687 -0.03 1.29 0.6 

irrigated 0.60 0.15 -0.627 0.687 -0.03 1.29 0.6 

Southeast 
rainfed 0.14 0 -0.627 0.687 -0.48 0.83 0.2 

irrigated 0.14 0.15 -0.627 0.687 -0.48 0.83 0.2 

Northeast 
rainfed 0.08 0 -0.627 0.687 -0.55 0.77 0.1 

irrigated 0.08 0.15 -0.627 0.687 -0.40 0.92 0.3 

South 
rainfed 0.15 0 -0.627 0.687 -0.48 0.83 0.2 

irrigated 0.15 0.15 -0.627 0.687 -0.33 0.98 0.3 
center 
west 

rainfed 0.15 0 -0.627 0.687 -0.48 0.84 0.2 
irrigated 0.15 0.15 -0.627 0.687 -0.33 0.99 0.3 

avg. input 
rainfed 0.15 0 -0.627 0.687 -0.48 0.83 0.2 

irrigated 0.15 0.15 -0.627 0.687 -0.33 0.98 0.3 

Wheat 

North 
rainfed 0.00 0 0 0 0 0 n/a 

irrigated 0.00 0 0 0 0 0 n/a 

Southeast 
rainfed 0.14 0 -0.627 0.687 -0.48 0.83 0.2 

irrigated 0.14 0.15 -0.627 0.687 -0.48 0.83 0.2 

Northeast 
rainfed 0.00 0 0 0 0 0 n/a 

irrigated 0.00 0 0 0 0 0 n/a 
South rainfed 0.16 0 -0.627 0.687 -0.47 0.84 0.2 

                                                            
44 Established plantations have no net yearly biomass accumulation.  
45 Use a value 1.6 tonnes biomass accumulation rate from USAID Forest Carbon Calculator: Data and Equations for 
the Agroforestry Tool. 
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irrigated 0.16 0.15 -0.627 0.687 -0.32 0.99 0.3 
center 
west 

rainfed 0.15 0 -0.627 0.687 -0.48 0.83 0.2 
irrigated 0.15 0.15 -0.627 0.687 -0.33 0.98 0.3 

avg. input 
rainfed 0.16 0 -0.627 0.687 -0.47 0.85 0.2 

irrigated 0.16 0.15 -0.627 0.687 -0.32 1.00 0.3 

Maize 

North 
rainfed 0.11 0 -0.627 0.687 -0.52 0.79 0.1 

irrigated 0.11 0 -0.627 0.687 -0.52 0.79 0.1 

Southeast 
rainfed 0.39 0 -0.627 0.687 -0.24 1.08 0.4 

irrigated 0.39 0.15 -0.627 0.687 -0.24 1.08 0.4 

Northeast 
rainfed 0.20 0 -0.627 0.687 -0.42 0.89 0.2 

irrigated 0.20 0 -0.627 0.687 -0.42 0.89 0.2 

South 
rainfed 0.46 0 -0.627 0.687 -0.17 1.15 0.5 

irrigated 0.46 0.15 -0.627 0.687 -0.02 1.30 0.6 
center 
west 

rainfed 0.37 0 -0.627 0.687 -0.26 1.06 0.4 
irrigated 0.37 0.15 -0.627 0.687 -0.11 1.21 0.6 

avg. input 
rainfed 0.36 0 -0.627 0.687 -0.27 1.05 0.4 

irrigated 0.36 0.15 -0.627 0.687 -0.12 1.20 0.5 

Other 
Crops46 

North 
rainfed 0.03 0 -0.627 0.687 -0.60 0.71 0.06 

irrigated 0.03 0.15 -0.627 0.687 -0.60 0.71 0.06 

Southeast 
rainfed 1.27 0 -0.627 0.687 0.64 1.95 1.3 

irrigated 1.27 0.15 -0.627 0.687 0.64 1.95 1.3 

Northeast 
rainfed 0.07 0 -0.627 0.687 -0.56 0.76 0.1 

irrigated 0.07 0.15 -0.627 0.687 -0.41 0.91 0.3 

South 
rainfed 0.65 0 -0.627 0.687 0.03 1.34 0.7 

irrigated 0.65 0.15 -0.627 0.687 0.18 1.49 0.8 
center 
west 

rainfed 0.69 0 -0.627 0.687 0.06 1.38 0.7 
irrigated 0.69 0.15 -0.627 0.687 0.21 1.53 0.9 

avg. input 
rainfed 0.39 0 -0.627 0.687 -0.23 1.08 0.4 

irrigated 0.39 0.15 -0.627 0.687 -0.08 1.23 0.6 

 

                                                            
46 Other crops include vegetables and fruits for export, no further information is given in “Fertilizer use by Crops” 
(FAO 2004) 
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