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Abstract1 
 
There are many sources of inflation forecasts for Latin America. The International 
Monetary Fund, Latin Focus, the Economist Intelligence Unit and other 
consulting companies all offer inflation forecasts. However, these sources do not 
provide any probability measures regarding the risk of inflation. In some cases, 
Central Banks offer forecast and probability analyses but typically their models 
are not fully transparent. This technical note attempts to develop a relatively 
homogeneous set of methodologies and employs them to estimate inflation 
forecasts, probability distributions for those forecasts and hence probability 
measures of high inflation. The methodologies are based on both parametric and 
non-parametric estimation. Results are given for five countries in the region that 
have inflation targeting regimes. 
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1 Introduction

There are many sources of inflation forecasts for Latin America. The IMF, Latin Focus, the
Economist Intelligence Unit (EIU) and other consulting companies all offer inflation forecasts.
In general, however, while these sources provide forecasts, they do not make available probabil-
ity measures regarding the risk of higher inflation. In some cases, Central Banks offer forecast
and probability analyses, but Central Bank models are not fully transparent and different Central
Banks have different methodologies. In this technical note, we attempt to develop a relatively
homogeneous set of methodologies and employ them to estimate inflation forecasts, probability
distributions for those forecasts and hence probability measures of inflation. The methodologies
are based on both parametric and non-parametric estimation, and we employ them on five inflation
targeting countries in the region.

We estimate two types of uni-variable models to describe the inflation dynamics of Latin
American countries (LAC). We use Auto-Regressive Moving Average models choosing appropriate
lag structures (ARMA(p,q) models), and we also estimate versions of these models with a fractional
integration parameter to capture higher persistence effects (namely ARFIMA(p,d,q)), both with a
constant dummy and with seasonal dummies to correct for seasonality and extreme values that the
models cannot capture.

Given the persistence that we find in the data and certain results discussed below, we take
the ARFIMA(p,d,q) models to forecast inflation processes. The application of the ARFIMA models
that we use are based on Doornik and Ooms (2004).2 To cope with the model selection uncertain-
ties, we estimate several ARMAs and ARFIMAs and select the best of those using defined criteria
(see below).

We use the annualized monthly inflation for all LAC. To define the sample period we test
for structural breaks in the series using the Bai-Perron Test.3 As we find that the ARFIMA models
outperform the ARMA models in terms of our selection criteria, we use the ARFIMA to forecast
inflation.

In estimating the probability distribution for future inflation, the problem of what distribu-
tional assumption to employ is confronted head on. Typically in econometric forecasting, forecast
estimates are assumed to be normally distributed. We consider this typical case, but instead we es-
timate the probability distribution of the forecasts using bootstrap methods. Then, to calculate the
risk probabilities we use a kernel density estimation of the bootstrap results. We find that the risk

2 Our estimations are computed with the ARFIMA package 1.04 for Ox developed by Doornik and Ooms (2006).
3 Bai and Perron (1998, 2003).
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probabilities give more information to analyze inflation forecasts as they capture and distinct cases
of high/low mean and high/low variance. They can also be used to make country comparisons.

In this note, we focus on presenting the results largely in an intuitive and graphical format.
A technical appendix gives further details regarding the methodologies and more detailed results.

Literature Review

Several institutions forecast and analyze inflation in LAC, including several Central Banks, and
they publish their results in inflation reports and other publications. However, Central Banks in
the region employ different models and do not always make the models they use fully transparent.
Moreover, while Central Banks and some other institutions publish inflation forecasts, they do not
all publish measures of probability regarding the likelihood of higher inflation levels.

The literature associated with the ARMA models and the Box-Jenkins methodology is stan-
dard in textbooks.4 To correctly estimate an ARMA model model, the series must be stationary. An
issue with macroeconomic variables is to establish the order of integration. To deal with this kind
of problem, the ARFIMA type of models are very useful. These models are more general as they
try to establish the degree of integration rather than assume exante whether a series is stationary or
is, say, I(1). The fractional integration model was first introduced by Granger and Joyeux (1980)
and Hosking (1981) as a class of model that can capture the properties of long-memory series.5

Diebold and Rudebusch (1989) show useful applications to model macroeconomic series. A good
introduction to the ARFIMA model and an application to model and forecast inflation can be found
in Doornik and Ooms (2004) and Bos, Franses, and Ooms (2001).

To calculate forecast intervals one usually relies on the normality of the forecast errors.
This approach could be justified when one has large samples and a well-known normal distribution,
but even under such circumstances the forecast error may not be normal distributed.6 Besides, it
may be that the distribution of inflation is not symmetric around its mean. First introduced by
Efron (1979), the bootstrap technique is used to estimate unknown distributions in small samples
or when a sampling distribution is analytically intractable. Veall (1987) and McCullough (1994)
do an application of this technique to estimate forecast intervals. For a more recent and complete
review of bootstrap methods see Horowitz (2001), Horowitz (2003) and Häirdle, Horowitz, and
Kreiss (2003).

4 See, for example, Davidson and MacKinnon (1993).
5 See also Beran (1994) and the literature review from Baillie (1996), Henry and Zaffaroni (2002) and Robinson
(2003).
6 In general, the forecast is a product of asymptotic normal variables instead of a linear combination of normal
variables; see McCullough (1994).
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2 Forecasting Models

To forecast inflation we use two kinds of univariable models: the ARFIMA(p,d,q), which stands
for autoregressive fractional integrated moving average model, and the ARMA(p,q), which stands
for autoregressive (AR) and moving average (MA) model. Here “p” is the maximum order of the
AR component, “q” is the maximum order of the MA component and “d” is the order of integration
of the series, denoted I(d). Our interest in taking these two models is to compare which one better
describes the inflation processes in LAC so we could use the superior model for forecasting. We
estimate that for most of the countries inflation data is best described by the ARFIMA model. In
this section we present the facts behind the estimations.

We take the longest series of the monthly consumer price index (CPI) that we could find
for Brazil, Chile, Colombia, Mexico and Peru.7 We calculate inflation as πt = 1200 log(Pt/Pt−1),
where πt and Pt are the rate of inflation and the monthly CPI in period t . To define the sample
for each country we run a structural break test for the mean of inflation. This test, known as Bai-
Perron(Bai and Perron, 1998, 2003), takes a number of partitions given exogenously and uses a
special algorithm to minimize the squared residuals and estimate the means, the break dates and
the confidence intervals for the break dates. The test gives the break dates endogenously.

This test allows us to identify the periods when the inflation settle around a more recent
state and would let the models capture the dynamics of inflation in a more recent and stable period.
Interestingly for all LAC, this recent period is the one with the lowest level of inflation on average,
and for all it started in the early or late 1990s. The results of the test are presented in Table 1 (page
8). Our selected sample starts at the first observation after the last break date.

We estimate 4,096 (= 26 × 26 ) ARFIMAs and 4,095 ARMAs per country. This amount
account for all the possible combinations of the AR(p) and MA(q) parameters from zero and up
to six. Unfortunately the process is time consuming, and our CPU memory was insufficient to take
the combinations up to more than six.8

Our criteria for selecting the better model are, in order of importance, the following: the
model must have statistically significant coefficients, it must pass all the standard test (normality,
ARCH, Portmaneau), it must have the lowest information criteria (SC, HQ, AIC) and finally, it must
have the lowest Root Mean Square Error (RMSE) in the pseudo out-of-sample forecast (described

7 Our sources are for Brazil: Broad National Consumer Price Index (IPCA); for Chile: IPC General Base Promedio
2009; for Colombia: Indice de precios al consumidor (IPC) ; for Mexico: IPC Por objeto del gasto Nacional; and for
Peru: Indice de Precios al Consumidor (Indice Base 2009=100).
8 To give an example, for an ARFIMA, the number of equations to be estimated for all the possible combinations of
parameters from zero to 12 are 16,777,216.
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below). In general, we find that the ARFIMA models outperform the ARMA models or perform at
least do as well as they do.

In Figure 1 (page 10), we plot the Schwarz (1978) and Rissanen (1978) criteria (SC) against
our classification of models according to one of our selection standards. We find that using this
criterion, the best ARFIMAs outperform the best ARMAs for Chile. For other countries like Brazil
and Mexico, ARFIMAs do as well as ARMAs do, while for Colombia and Peru, the ARMAs do better
than ARFIMAs.

We then measure the RMSE of the best ARFIMAs against the best ARMAs. We calculate
the RMSE using a dynamic pseudo out-of-sample forecast9 for four horizons and a rolling sample.
First we estimate the selected model with one fourth of the whole sample, which we refer to as
the initial sample (s0). Then we forecast out of the sample for h = {3,7,14,21} steps ahead.
Next we add to the initial sample one forward observation and forecast again out of the sample
for h = {3,7,14,21} steps ahead. We stop until we cover the whole feasible sample, that is from
s = s0, . . . ,S .10 We calculate the RMSE as follows:

RMSEh =

[
1
Sh

Sh

∑
s=s0

(
πs+h|s− f̂s+h|s

)2
]1/2

(1)

We find that in general the ARFIMA models do better than the ARMAs and the AR(1)s. For Chile and
Colombia, the ARFIMA does better in every horizon and even against an AR(1). Brazil’s ARFIMA

also does better than the ARMA but not much better than the AR(1), and actually for the 21 horizon
it does worse. The ARFIMAs for Mexico and Peru do not do better in every case against the ARMA,
but they do better for long horizons, or at least not worse than any ARMA or AR(1). The results of
this exercise are presented in Figure 2 on page 11.

Finally, we use the likelihood ratio (LR) to test that none of the ARFIMAs is encompassed
by its nested ARMA model;11 we find that for all the ARFIMA models, this is not the case (see Table
2 on page 9).

All the previous analysis accounts for model uncertainties. Now to account for the uncer-
tainties in the coefficients and in the disturbances, we use the observed sample errors to construct
an “artificial” sample of the errors and the dependent variable. We re-estimate both the coefficients
and forecast with this new dependent variable. This task is done several times taking the sample

9 We mean this: f̂T+h+1|T = β̂ f̂T+h|T , for a given β̂ estimated with a sample T .
10 As we are forecasting out-of-sample our feasible sample will vary with the forecasting horizons and will be smaller
than the whole sample.
11 Since the I(0) and I(1) are particular cases in the ARFIMA model, one can perform LR tests for the null d = 0 or
d = 1 against the alternative d ∈ (0,1) .
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errors randomly without replacement so that we end up with a whole range of coefficients and
forecasts. This method is known as bootstrapping. Finally we use a kernel density estimation to
produce the probability density of the forecasts. For a more technical explanation see the Section
Bootstrapping Forecast in the Appendix (page 16). In Figure 3 (page 12) we plot the out-of-sample

inflation forecasts for the five countries using the ARFIMA models with the bootstrap confidence
interval.12

There are several aspects to note about these forecasts. First, the forecast estimate that the

annual inflation for the next periods will be bigger than the last observed but lower than those in
other periods. Second, there are countries that have larger confidence intervals than others, like
Brazil and Chile. This fact reflects that the variance of inflation in the sample is larger for those
countries. And finally, for some countries (like Brazil, Colombia and Mexico) the forecast density
is less symmetric than other countries’ density, which means that the probabilities of values above
the mean are different from the values below the mean (see Figure 4, page 13).

3 Probability Measurement

We are basically interested in end-of-year inflation, so we present the probability measures for
December of 2011 (one year ahead) and 2012 (two years ahead). As discussed above, our preferred
model is that stemming from the ARFIMA methodology. The probabilities for the ARFIMA models
are displayed for the five countries in Figure 5 (page 14) below. We use a Gaussian kernel density
to estimate the probability of high inflation for the annual inflation rate.13

There are three things to note. First, the further to the right a curve is, the higher the forecast
inflation level, and it also follows that the country may have a greater probability of experiencing
high inflation. Second, the steeper the curve, the less the predicted variance, and we will be less
likely to be “surprised” with high values of inflation. Finally, when the two-year probability curve
is below the one-year probability curve, it means either that the inflation forecast is rising in the
first year but settling in the second year, or that the forecast is converging to the unconditional mean
more rapidly; this convergence will vary from model to model and will depend on the persistence
of the models.

The estimations in Figure 5 (page 14) also allow us to make comparisons across countries.
For example, comparing Brazil and Peru, it can be seen that Peruvian inflation stochastically domi-

12 We transform the monthly forecast to annual forecast; the procedure for doing so is discussed in the Appendix
(page 17).
13 For more detail on the calculation, see the Section Transformation and Kernel Density Estimation in the Appendix
(page 17).
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nates14 Brazil’s (and all other countries’ inflation) for the next two years. In other words, the entire
distribution of Peruvian inflation is to the left of other countries’ inflation distributions considering
a two year horizon.

An other interesting case is Colombia’s inflation versus Chile’s inflation at the close of
2011. Both mean forecasts are roughly the same, but Colombia’s probability function appears as
less risky, in the sense that is less likely to have inflation rates greater than 5 percent. In this case
we say that Colombia’s inflation second-order stochastically dominates Chile’s inflation.

The models also predict that inflation in Colombia and Brazil will be higher than the previ-
ous year, with more or less the same variance. Mexico’s inflation will be higher than the previous
year as well, but its variance will increase. On the other hand, Chile’s and Peru’s inflation will be
less, though Chile’s variance will increase.

4 Conclusions

We show a way to calculate inflation probabilities using kernel densities and forecasts from ARFIMA

models. In our forecast we try to account for different uncertainties associated with the forecasting
exercise, which include model selection, parameter stability and error sample distribution.

Note that these forecasts are unconditional and for that reason the conclusions should be
interpreted as a short-run analysis. A long-run analysis should take into account other variables
and institutional arrangements and policy actions that are influencing the path of inflation.

To have a probability of higher inflation does not mean that the national authorities or the
Central Banks are failing in their functions; indeed, these probability distributions reflect shocks
that by their nature are unanticipated and we do not therefore incorporate the effects of new pol-
icy actions that might be taken if shocks were to materialize. Rather, we see this analysis as a
homogeneous way to consider the ex ante risks of higher inflation in the region at the current time.

14 We say that a probability function F(π) first-order stochastic dominates (is unambiguously better than) another
probability function G(π), if F(π)≤ G(π) for all π. For more detail on this see Hadar and Russell (1969), Rothschild
and Stiglitz (1970).
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Table 1. Break Dates from Structural Change Test

Brazil
(January 1948 - March 2011)

Coefficients 23.84 63.23 224.49 18.41 6.10
Std.Err. 2.89 9.75 58.42 2.86 0.88
Break dates Jul-1975 Jan-1985 Jun-1994 Jan-1997

Chile
(January 1947 - March 2011)

Coefficients 25.33 86.67 17.36 4.16
Std.Err. 2.17 13.08 1.47 0.44
Break dates Jun-1971 Jan-1981 Oct-1993

Colombia
(July 1954 - March 2011)

Coefficients 9.71 21.28 5.82
Std.Err. 1.44 1.32 1.22
Break dates Jan-1973 Jun-1998

Mexico
(January 1969 - March 2011)

Coefficients 9.89 20.71 65.46 18.40 5.07
Std.Err. 1.95 2.43 7.39 3.85 0.55
Break dates Sep-1975 Dec-1981 Mar-1988 Feb-1999

Peru
(February 1950 - March 2011)

Coefficients 9.35 119.94 15.86 2.32
Std.Err. 0.86 21.84 3.84 0.51
Break dates Aug-1982 Aug-1991 Oct-2000
Notes:
Bai and Perron (1998, 2003) test for multiple structural breaks.
We use a constant as regressor, correct for serial correlation, a trimming of 0.15 and
allow up to 5 breaks.
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Table 2. Likelihood Ratio Test

Country Lur Lr χ2(1) Prob.
Brazil -427.79 -438.87 22.16 0.000
Chile -584.31 -606.95 45.29 0.000
Colombia -358.61 -367.01 16.78 0.000
Mexico -315.23 -339.66 48.86 0.000
Peru -303.93 -322.79 37.71 0.000
Notes:
Lur is the likelihood of the unrestricted model: I(d).
Lr is the likelihood of the restricted model: I(0).
χ2(1) is the Chi-square statistic with one degree of freedom.

Table 3. Resume Table

Forecast1 Pr(π)≥ 5% Pr(π)≥ 10%
Country Dic 2011 Dic 2012 Dic 2011 Dic 2012 Dic 2011 Dic 2012

Brazil 7.0 6.6 0.988 0.895 0.026 0.005
Chile 4.2 3.5 0.230 0.122 0.000 0.000
Colombia 4.0 5.3 0.066 0.632 0.000 0.000
Mexico 3.6 3.9 0.076 0.140 0.000 0.000
Peru 3.1 2.8 0.004 0.002 0.000 0.000
Notes:
Annual inflation forecasts and probabilities.
1 Mean of the bootstrap distribution.
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Figure 1. Model Selection Based on Information Criteria
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Figure 2. Model Selection Based on RMSE

Brazil Chile

5 5

5.6

5.5

5.6

5.3

5.4

5.5

5.1

5.2

5.3

5.4

Colombia Mexico

5.1

5.2

3 7 14 21
4.9

5.0

3 7 14 21

3.4

3.5

3.6

3.7

3.8

3.9

3 0

3.1

3.2

3.3

3 3

3.4

3.5

3.6

Peru

4.0

4.1

3.0
3 7 14 21

3.3
3 7 14 21

Arma(p,q)

Arfima(p,d,q)

AR(1)3.7

3.8

3.9

0

3.5

3.6

3 7 14 21

Note: RMSE of the 3, 7, 14 and 21 h step-ahead forecast starting with one fourth of the sample and rolling the forecast one step forward to the end of the sample.

11



Figure 3. Annual Inflation Forecast
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Figure 4. Probability Distribution of Annual Inflation
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Figure 5. Probability of Inflation
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Appendix

Estimating and Forecasting an ARFIMA Model15

Let yt be a random variable, then the ARFIMA(p,d,q) model representation is:

Φ(L)(1−L)d(yt−µt) = Θ(L)εt , t = 1, . . . ,T. (2)

Where Φ(L) = (1− φ1L− . . .− φpLp) is the AR polynomial, Θ(L) = (1+ θ1L+ . . .+ θqLq) is
the MA polynomial and L is the lag operator. The letters p and q just take integers values but d

can take any real number. All roots of Φ(L) = 0 and Θ(L) = 0 lie outside the unit circle and don’t
have common roots between them, this condition state that the model is stationary. We assume that
εt ∼ NID(0,σ2

ε) and write µt for the mean of yt and define zt = yt−µt
16. The fractional difference

operator is defined by the following binomial expression:

(1−L)d =
∞

∑
j=0

(
d
j

)
(−L) j = 1−dL+

d(d−1)
2!

L2− d(d−1)(d−2)
3!

L3 + . . . (3)

When −0.5 < d < 0.5 the process is stationary and invertible. Then when 0 < d < 0.5 the
process has long memory and the autocovariance function has hyperbolic decay, ck2d−1 as k→ ∞,
rather than an exponential decay. An other interest case is when 0.5 ≤ d < 1, in this case the
process is non-stationary but still mean-reverting. When d = 1 the process is called non-stationary,
infinite memory or I(1), and finally when d = 0 the process is called stationary, short memory or
I(0). When the process is invertible, the MA and the AR representations of zt are calculated as
follows:

zt =
∞

∑
j=0

a jL j
εt− j = A(L)εt . (4a)

zt−
∞

∑
j=1

b jL jzt− j = B(L)zt = εt . (4b)

Note that when d < 1, then a j → 0 as j → ∞, conventionally a0 = 1 and b0 = 1. We define
A(L) = Φ(L)−1(1−L)−dΘ(L) and B(L) = Θ(L)−1Φ(L)(1−L)d .

15 For more detail of the procedure and the algorithms presented here see Doornik and Ooms (2006) and Doornik and
Hendry (2009, Chapter 13).
16 The treatment of the mean (µt ) can be set in three different ways: fixing it at some predefined value, setting it as a
deviation from the sample mean, or using no mean but include a constant in the regression.
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To estimate the parameters, we use the Exact Maximum Likelihood (EML). An important
thing to note is that the function of likelihood is maximized using Broyden?Fletcher?Goldfarb?Shanno
(BFGS) with numerical derivatives and stationarity is imposed, which means that the procedure re-
ject the parameter values ether when d̂ ≤−5, when d̂ > 0.49999 or when |ρ̂i| ≥ 0.9999, where ρ̂i

are the roots of the AR polynomial17.

The program uses the estimates from the EML to calculate the dynamic forecast (best linear
prediction) of zT+H|T and yT+H|T using the following algorithms:

ẑT+H|T = σ
−2
ε (γT−1+H . . .γH)(ΣT )

−1z = q′z. (5a)

ŷT+H|T = q′(y−µ)+µT+H|T +x′T+H|T β̂. (5b)

Where σ2
ε is the error variance, γi is the autocovariance E[(yt − µ)(yt−i− µ)], ΣT is the autoco-

variance matrix, z = (z1, . . . ,zT )
′, y = (y1, . . . ,yT )

′, µ = (µ1, . . . ,µT )
′, x is a matrix of exogenous

variables, T is the actual sample size and H is the forecast horizon. This is a dynamic forecast
which means that depending on the length of H, the right-hand variables may be predicted.

Bootstraping Forecasts

Let inflation be a random variable with an ARFIMA data generating process (DGP)18:

πt =
T

∑
j=1

b jL j
πt− j +x′tβ+ εt , t = 1, . . . ,T. (6)

We assume that εt ∼ NID(0,σ2
ε) and define B(L) = Θ(L)−1Φ(L)(1− L)d = ∑

∞
j=0 b jL j.

Estimating this equation by EML we get the T ×1 residual vector, ε̂t = πt −∑
T
j=1 b̂ jL jπt− j +x′t β̂.

Then we take a sample of size τ = 100 from ε̂t . This sample is randomly selected from a uniform
distribution without replacement19. This way we get a pseudo-random sample of residuals ε̂

∗
t of

size τ×1. Because x′t has seasonal variables, the sort order matters, so we just take a sub-matrix of
size τ× k with the same row order. Next, as with the bootstrap residuals, we take a sample of size

17 We also try other methods of estimation like Modified Profile Likelihood (MFL) and Nonlinear Least Squares (NLS).
We find that for most of the countries the “d” parameter is rather stable.
18 Instead of defining a mean (µt ) or letting the estimations take it as a deviation from the sample mean, we set it to
zero and use a constant in the regression. In addition, we include in xt seasonal dummies and impulse dummies that
correct for some outliers.
19 To assure a consistent bootstrap distribution with the underlying time series model, the residuals have to be ho-
moskedastic and not autocorrelated. We select a subsample without replacement to get rid of the autocorrelation from
the specification and avoid inconsistency due to violation in continuity. The consistency depend on the continuity of
the mapping between the population distribution of the residuals and the distribution of the parameters. The param-
eters distribution have to be continuous with the errors. See Horowitz (2001), Section 2.1 and 2.2, and Brownstone
and Valletta (2001), Section 1.2 and the literature cited. For a discussion of why is this type of bootstrap better than a
block-bootstrap see Horowitz (2003), Section 4.
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τ from π̂t , randomly selected from a uniform distribution without replacement. With this “new”
variables we construct the pseudo-random sample for the dependent variable π̂

∗
t as follow:

π̂
∗
t =

τ

∑
j=1

b̂ jL j
π̂t− j +x∗′t β̂+ ε̂

∗
t , t = 1, . . . ,τ. (7)

Finally we re-estimate the ARFIMA model and re-forecast (dynamically)20 but now using
the bootstrap dependent variable π̂

∗
t . We repeat this process a large number of times (J = 1,000)

and each time we collect the parameter values and the h-step ahead forecast. At the end of the
procedure we get a bootstrap parameter values matrix [Φ̂∗(L), d̂∗,Θ̂∗(L)] of J× k and a matrix of
forecasts (π̂t+h) of J×H.

We construct the forecast confidence interval with the percentiles of the bootstrap forecast
distribution F∗h . For any h-step ahead, the forecast interval is P{F∗h (α) ≤ π̂t+h ≤ F∗h (1−α)} =
1−2α. In this case for J = 1000 and α = 0.05, the 90% interval is determined with the 50th value
and the 950th value in the hth column of the forecasts matrix.

Transformation and Kernel Density Estimation

The kernel density is a non-parametric estimation of the density function of a random variable. In
this section we describe how we perform this estimation for the annual inflation forecast and how
we get form the monthly annualized forecast to the annual inflation forecast.

We define the following identities:

π
1
t ≡ 1200 log(Pt/Pt−1) (Monthly Annualized Inflation)

π
12
t ≡ 100 log(Pt/Pt−12) (Annual Inflation)

20 The details of the forecast are in the section Estimating and Forecasting an ARFIMA Model, page 15 of the Ap-
pendix.
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The annual inflation can expressed as π12
t ≡ 1

12

(
π1

t +π1
t−1 +π1

t−2 + . . .+π1
t−11

)
. Using this

expression we calculate the expected value and the variance of the forecast.

Et
[
π

12
t+h
]
= Et

[
1

12
(
π

1
t+h +π

1
t+h−1 + . . .+π

1
t+h−11

)]
,

=
1
12
(
Et
[
π

1
t+h
]
+Et

[
π

1
t+h−1

]
+ . . .+Et

[
π

1
t+h−11

])
.

Vart
[
π

12
t+h
]
= Vart

[
1

12
(
π

1
t+h +π

1
t+h−1 + . . .+π

1
t+h−11

)]
,

=
1

122

11

∑
i=0

Vart
[
π

1
t+h−i

]
+

2
122

11

∑
j=i+1

10

∑
i=0

Covt

[
π

1
t+h−i,π

1
t+h− j

]
.

The kernel estimator has the following form:

f̂w(y) = (Tw)−1
T

∑
t=1

K
(

y− ŷs
t

w

)
. (10)

Where w is the bandwidth, y is the random variable and K(·) is the kernel function. In this
case we use the Gaussian Kernel. We use the bandwidth value recommended in Silverman (1986,
p. 48)21.

The results of the kernel estimation delivers discrete values of the density function estima-
tion f̂ (πt) for a range of values in the function’s domain say, πt0 ,πt1, . . . ,πtN , with certain incre-
ments in this range that we define as δ = ‖πti −πt j‖, i 6= j. We obtain the cumulative distribution
function estimate F̂(πt) with the following formula:

F̂(πt) = ∑
{ j :πt j ≥πt}

δ f̂ (πt j). (11)

Note that we add all the density values for inflations grater than πt as we like to calculate the
probability that inflation exceed some πt value. Because we are dealing with discrete values, the
density estimation is going to have some errors and will not sum to one exactly. The size of the
errors will depend on the size of the δ increments (0.1 in our case) and on the symmetry of the
curve. The errors will be positive when the slope of the density curve is positive and negative
when the slope of the density curve is negative.

21 w = 0.9T−1/5min{σ̂2
y , iqr/1.34}, where iqr is the interquartile range.
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