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Outline

Outline

1 Basic notions of Bayesian econometrics

• Bayes theorem; model selection

2 State-Space models

• State-space models; the Kalman filter and the likelihood
computation; Bayesian estimation; Kalman smoothing and
shock decomposition; Carter and Kohn and Durbin and
Koopman simulation smoothers, Applications: Time varying
parameter models; Factor models; Stochastic Volatility.

3 An introduction to MCMC methods

• Metropolis-Hastings; Gibbs sampler.
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Outline

Outline – continued

4 DSGEs

• Introducing a simple workhorse DSGE model; Estimation;
forecasting; impulse response function and variance
decomposition.

This is a three hours version of a week long course. The full set of slides
for the course is available here.
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Basic notions of Bayesian econometrics

Some language

• y1:T = {y1, .., yt , .., yT}: data (sometimes Y for short), Y ∈ Y.
When not obvious, we will distinguish between the random variable
yt and its realization yo

t

• θ: parameters, possibly including latent variables; with θ ∈ Θ

• p(y1:T |θ): is the distribution of the data given the parameters (a
parametric model); e.g.

M1 : yt = µ+ εt , εt ∼ N(0, σ2)

where θ = {µ, σ} and Θ = IR × IR+

⇒ pdf of y1:T is: p(y1:T |θ,M1) = ΠT
t=1(2πσ2)−

1
2 exp(−1

2

(yt − µ)2

σ2
)

• Likelihood function: p(yo
1:T |θ,M1) viewed as a function of θ, e.g.

L(θ; yo
1:T ,M1) ∝ p(yo

1:T |θ,M1)

• Many models: Mi , e.g. M2 : yt = µ+ ρyt−1 + εt , εt ∼ N(0, σ2),...
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Basic notions of Bayesian econometrics

• Questions:

• The inference problem: What can I learn about θ from the
observed data yo

1:T ?

• How can I find out whether the data come from model M1, or
M2, or ...?
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Basic notions of Bayesian econometrics

• Bayesian approach: both data Y and parameters θ are random

• θ is random: the prior p(θ) reflects my uncertainty about θ
before seeing the data

• the posterior p(θ|Y ) reflects my uncertainty about θ
after seeing the data

• p(θ)→ p(θ|Y )? Bayes’ law

• Game plan is simple: form beliefs (probabilities) over what you
want to conduct inference on, and update them in light of the
data using Bayes law.
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Basic notions of Bayesian econometrics Bayes’ Law

Bayes’ law

• Given two events A and B, with joint probability p(A,B) and
marginals p(A) and p(B):

p(A|B) =
p(A,B)

p(B)

• Similarly:

p(θ|y1:T ) =
p(θ, y1:T )

p(y1:T )
=

p(y1:T |θ)p(θ)

p(y1:T )

• How do I get p(y1:T ) (marginal likelihood)?

p(y1:T ) =

∫
p(θ, y1:T )dθ =

∫
p(y1:T |θ)p(θ)dθ
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Basic notions of Bayesian econometrics Bayes’ Law

• Conditional on observed data, the posterior distribution and
marginal likelihood are p(θ|yo

1:T ) and p(yo
1:T ), respectively.

• Any function k(θ|yo
1:T ) ∝ p(θ|yo

1:T ) is a (posterior density) kernel

• Call w the vector of interest (e.g., forecasts – in which case
w = yT+1,..,T+H – etc. ), and assume you have a vector of interests
density

p(w |y1:T , θ,Mi )

• Then the object of inference is

p(w |yo
1:T ,Mi ) =

∫
p(w |yo

1:T , θ,Mi )p(θ|yo
1:T ,Mi )dθ

(this if we have only one model on the table – we will discuss later
the case where there are many models)
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Basic notions of Bayesian econometrics Bayes’ Law

Example I

• Say our model M is of the form

y = θ + ε, ε ∼ N(0, σ2
l )

⇒ p(y |θ) = (2πσ2
l )−

1
2 exp(−1

2

(y − θ)2

σ2
l

)

where the prior on θ is given by

θ ∼ N(µp, σ
2
p)

that is

p(θ) = (2πσ2
p)−

1
2 exp(−1

2

(θ − µp)2

σ2
p

)

with µp, σ2
l , and σ2

p being known quantities.
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Basic notions of Bayesian econometrics Bayes’ Law

Hence the joint is

p(y , θ) = p(y |θ)p(θ) = ((2π)2σ2
l σ

2
p)−

1
2

exp

(
−1

2

[
(σ−2

l + σ−2
p )θ2 − 2(σ−2

l y + σ−2
p µp)θ + σ−2

l y2 + σ−2
p µ2

p

])

= p(θ|y)p(y) = N(µπ, σ
2
π)p(y)

where

µπ =
σ−2
l

σ−2
l + σ−2

p

y +
σ−2
p

σ−2
l + σ−2

p

µp, σ2
π =

(
σ−2
l + σ−2

p

)−1

and

p(y) = (2π
σ2
l σ

2
p

σ2
π

)−
1
2 exp

(
−1

2

[
σ−2
l y2 + σ−2

p µ2
p − σ−2

π µ2
π

])

=
(
2π
(
σ2
l + σ2

p

))− 1
2 exp(−1

2
[σ−2

l (1− σ−2
l

σ−2
l + σ−2

p

)y2+

σ−2
p (1− σ−2

p

σ−2
l + σ−2

p

)µ2
p − 2

σ−2
p σ−2

l

σ−2
l + σ−2

p

yµp])
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Basic notions of Bayesian econometrics Bayes’ Law

• What’s the idea? Prior × model (likelihood) deliver a joint:
p(θ, y) = p(y |θ)p(θ)
(this is the µp = 0, σp = σl = 1 case)
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Basic notions of Bayesian econometrics Bayes’ Law

• Now, I observe yo
1:T , say yo = −1.

• What’s the distribution of θ given that observation? The conditional,
which is ∝ to the joint computed for y = yo

1 : p(θ|yo
1 ) ∝ p(θ, yo

1 )
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Basic notions of Bayesian econometrics Bayes’ Law

• What is the marginal likelihood? Simply the marginal for y :

p(y1:T ) =

∫
p(θ, y1:T )dθ
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Basic notions of Bayesian econometrics Bayes’ Law

• p(yo
1 ) is the answer to: How likely was I to observe y0

1 given the
model I had? (and also the normalization constant for the posterior:

p(θ|yo
1 ) =

p(θ, yo
1 )

p(yo
1 )

)
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Basic notions of Bayesian econometrics Bayes’ Law

• What if the data are more informative (σl = σp/4)?
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

Model comparison, Bayes factors, and posterior odds

• Say we are considering two models, M1 and M2. Which one fits
the data best?

• p(M1) and p(M2) are our prior probabilities on the two models,

with
2∑

i=1

p(Mi ) = 1

• What is the probability of model Mi after looking at the data?

p(Mi |yo
1:T ) =

p(yo
1:T |Mi )p(Mi )

p(yo
1:T )

where p(yo
1:T |Mi ) is the marginal likelihood of model Mi , and

p(yo
1:T ) =

2∑

i=1

p(yo
1:T |Mi )p(Mi )
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

• So what is the relative probability of model M1 vs M2?

p(M1|yo
1:T )

p(M2|yo
1:T )︸ ︷︷ ︸

Posterior Odds

=
p(yo

1:T |M1)

p(yo
1:T |M2)︸ ︷︷ ︸

Bayes Factor

p(M1)

p(M2)︸ ︷︷ ︸
Prior Odds

• Why do we care? Because if we have to make decisions about our
vector of interest w , which is model-dependent, then we want to
figure out how to weight the different models :

p(w |yo
1:T ) =

∑

i

p(w |yo
1:T ,Mi )p(Mi |yo

1:T )

• Note: the marginal likelihood is – when normalized – a probability!
Posterior odds are ... odds: they capture all remaining uncertainty
we have on the relative goodness of fit of model M1 vs M2 after
observing the data.
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

• Model M1:

p(y |θ,M1) : y = θ + ε, ε ∼ N(0, 1)

Pr(θ|M1) : p(θ) = (2π)−
1
2 exp(−θ

2

2
)

• Model M2:

p(y |θ,M2) : y = θ + ε, ε ∼ N(0, 1)

Pr(θ|M2) : Pr(θ) =

{
1 if θ = 0
0 otherwise

• Posterior:

p(θ|y ,M1) = N(
y

2
,

1

2
)

Pr(θ|M2) =

{
1 if θ = 0
0 otherwise
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

• M1 (black) vs M2 (red)
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

• Marginal likelihoods:

p(y |M1) = (4π)−
1
2 exp(−y2

4
)

p(y |M2) = (2π)−
1
2 exp(−y2

2
)

• Bayes factor:

p(y |M1)

p(y |M2)
= (2)−

1
2 exp(

y2

4
) > 1, if y2 > 2 log(2)

• Model M3:

p(y |θ,M3) : y = ε, ε ∼ N(0, 1)

p(θ,M3) : p(θ) = (2π)−
1
2 exp(−θ

2

2
)

• Same marginal likelihood as M2: p(y |M3) = p(y |M2), but very
different posterior:

p(θ|y ,M3) = (2π)−
1
2 exp(−θ

2

2
)
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Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

Marginal Likelihood as out-of-sample concept

• The marginal data density addresses the question: What is model
Mi ’s a priori (hence, out-of-sample) guess for what the data are
going to look like?

p(y1:T |Mi ) =

∫
p(y1:T | θ,Mi )p(θ|Mi )dθ

... and how does such a guess compare with what the data turned
out to be? Marginal likelihood is the likelihood of observing the data
under model Mi : p(yo

1:T |Mi )

• .. Or, how well did model Mi predict the data yo
1:T ?

• Models that make sharper predictions – if such predictions are not at
odds with the data yo

1:T – are favored (⇒ penalty for
over-parameterization).

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 22 / 172



Basic notions of Bayesian econometrics Marginal Likelihood and Model Comparison

• Predictive density: p(yT+1:T+H |yo
1:T ,Mi )

• Predictive likelihood: p(yo
T+1:T+H |yo

1:T ,Mi )

• Marginal likelihood is the product of predictive densities – obtained
after recursively updating (at every t) the prior/posterior!

p(yo
1:T |Mi ) = p(yo

T |yo
1:T−1,Mi )p(yo

1:T−1|Mi )

= ΠT
t=2p(yo

t |yo
1:t−1,Mi )p(yo

1 |Mi )

where p(yo
1 |Mi ) =

∫
p(yo

1 | θ,Mi )p(θ|Mi )dθ is the predictive

likelihood for yo
1 obtained using the prior.

• M. Friedman (“The Methodology of Positive Economics,” 1953)
Theory is to be judged by its predictive power . . . The only
relevant test of the validity of a hypothesis is comparison of its
predictions with experience.

• Exercise: Show that the overall posterior p(θ|y1:T ) is

obtained by recursive updating, that is, at each step

t you start from the t − 1 posterior p(θ|y1:t−1) and

update it using the likelihood p(yt |y1:t−1, θ).
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State-Space models State-space models: the Kalman filter

State-space models

• Transition equation:

st = T (θ)st−1 + R(θ)εt , t = 1, ..,T

where st is k × 1, εt is r × 1, θ is a vector of model parameters, and
T (θ) (k × k) and R(θ) (k × r) are functions of these parameters.
E.g.

st = θ1st−1 + θ2εt

where simply T (θ) = θ1 and R(θ) = θ2.

• Measurement equation:

yt = Z (θ)st + D(θ) + ut , t = 1, ..,T

where yt is n × 1, Z (θ) is n × k and D(θ) is n × 1. E.g.

yt = θ3 + θ4st + ut

where Z (θ) = θ4 and D(θ) = θ3.
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State-Space models State-space models: the Kalman filter

• Distribution of the shocks (εt)/measurement error (ut):

εt ∼ N(0,Q(θ)) iid , Q(θ) diagonal; ut ∼ N(0,H(θ)) iid

where Q(θ) is a diagonal matrix with the σ2s of each shock on the
diagonal (although you do not have to impose this condition on
what follows). We will also assume in the derivations that
IE [usε

′
t ] = 0, all s, t, although again it is straightforward to derive

formulas that allow for correlation.

• Initial conditions:
s0 ∼ N(s0|0,P0|0)

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 25 / 172



State-Space models State-space models: the Kalman filter

p(y1:T |θ) for state-space models

• We want to compute

p(y1:T |θ) = p(yT , ..., y1|θ)

• Use conditioning!

p(yT , ..., y1|θ) = p(yT |yT−1, ..., y1, θ)p(yT−1, ..., y1, θ)

= p(yT |y1:T−1, θ)..p(yt |y1:t−1, θ)..p(y1|θ)

=
T∏

t=1

p(yt |y1:t−1, θ)

where y1:0 = {} (i.e., p(y1|y1:0, θ) is the unconditional probability).
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State-Space models State-space models: the Kalman filter

• But p(yt |y1:t−1, θ) is Gaussian, and the Gaussian distribution is fully
nailed down by its mean and variance.

• If we know yt|t−1 = E (yt |y1:t−1, θ) and Vt|t−1 = Var(yt |y1:t−1, θ) we
can compute

p(yt |y1:t−1, θ) = (2π)−
1
2 |Vt|t−1|−

1
2

exp

(
−1

2
(yt − yt|t−1)′V−1

t|t−1(yt − yt|t−1

)

and hence p(y1:T |θ) =
T∏

t=1

p(yt |y1:t−1, θ)
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State-Space models State-space models: the Kalman filter

How do we get yt|t−1 and Vt|t−1? Kalman filter!

• The Kalman filter is a recursive algorithm.
• Say you know
st−1/t−1 = E (st−1|y1:t−1, θ), Pt−1/t−1 = Var(st−1|y1:t−1, θ)

st−1/t−1

Pt−1/t−1

forecasting−−−−−−→ st/t−1

Pt/t−1
→ yt/t−1

Vt/t−1

update−−−−→ st/t
Pt/t

• Forecasting:
1 Use

st = T (θ)st−1 + R(θ)εt

to obtain

st|t−1 = Tst−1|t−1

Pt|t−1 = TPt−1|t−1T
′ + RQR ′

2 Use

yt = Z(θ)st + D(θ) + ut , t = 1, ..,T

to obtain

yt|t−1 = Zst|t−1 + D

Vt|t−1 = ZPt|t−1Z
′ + H
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State-Space models State-space models: the Kalman filter

• Updating

• An aside on conditional distribution for Gaussian variables (normal
updating). Say y and s are jointly Gaussian

y
s
∼ N

(
µy

µs

[
Σyy Σys

Σ′ys Σss

])

... then here’s how you get the conditional distribution

E [s|y ] = µs + Σ′ysΣ−1
yy (y − µy )

V [s|y ] = Σss − Σ′ysΣ−1
yy Σys

• By the same token, since the distribution of st and yt conditional on
t − 1 information is

yt
st

∣∣∣∣ y1:t−1 ∼ N

(
yt|t−1

st|t−1

[
Vt|t−1 ZPt|t−1

Pt|t−1Z
′ Pt|t−1

])

st|t = st|t−1 + P ′t|t−1Z
′V−1

t|t−1(yt − yt|t−1)

Pt|t = Pt|t−1 − P ′t|t−1Z
′V−1

t|t−1ZPt|t−1
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State-Space models State-space models: the Kalman filter

• How do we start the algorithm? Recall we assumed

s0 ∼ N(s0|0,P0|0)

• How do we choose s0|0,P0|0? If st is stationary, a natural choice is
the ergodic distribution: s0|0 = E [st ] = 0, and P0|0 = E [sts

′
t ] solves

the Lyapunov equation

P0|0 = TP0|0T
′ + RQR ′
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State-Space models State-space models: the Kalman filter

• Note that

st+1|t = Tst|t−1 + Kt(yt − yt|t−1)

Pt+1|t = TPt|t−1T
′ − TP ′t|t−1Z

′K ′t + RQR ′

where Kt = TP ′t|t−1Z
′V−1

t|t−1 is called the Kalman gain.

• Recursive formulation for Pt+1|t

Pt+1|t = TPt|t−1T
′ − TP ′t|t−1Z

′K ′t + RQR ′

= TPt|t−1T
′ − TP ′t|t−1Z

′V−1
t|t−1ZPt|t−1T

′ + RQR ′

= TP ′t|t−1(I − Z ′(ZPt|t−1Z
′ + H)−1ZPt|t−1)T ′ + RQR ′

for t →∞, Pt+1|t → P̄1|0 and Kt → K̄

st+1|t = Tst|t−1 + K̄ (yt − yt|t−1)

= K̄ (yt − D)− K̄ (yt|t−1 − D) + Tst|t−1

= K̄ (yt − D) + (T − K̄Z )st|t−1

=
∞∑

j=0

(T − K̄Z )j K̄ (yt−j − D)

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 31 / 172



State-Space models State-space models: the Kalman filter

Innovation representation

• t|t − 1 → t + 1|t
• Define the innovations

xt = st − st/t−1

and the forecast errors

νt = yt − yt/t−1 = Zxt + ut

• Define Lt = T − KtZ , then

xt+1 = Tst + Rεt+1 − Tst|t−1 − Ktνt

= Txt − KtZxt + Rεt+1

= Ltxt + Rεt+1

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 32 / 172



State-Space models State-space models: the Kalman filter

• These formulas are the “innovation analogue” of the state-space
model. An alternative updating formula for Pt+1|t is:

Pt+1|t = TPt|t−1L
′
t + RQR ′,

and the whole Kalman filter recursion can be defined in terms of νt ,
st|t−1, Pt|t−1, the formula for Vt|t−1 and the matrices Kt and Lt .

• Used in Koopman, Disturbance smoother for state space models,
Biometrika 1993. Here are some notes of mine (and Jenny Chan,
Dan Greenwald) explaining Koopman’s smoother using our notation,
and some Matlab code implementing it (see kalsmth k93.m).
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State-Space models Latent variables: Smoothing and simulation smoothers

Learning about latent variables

• Address questions like

• What are the drivers of business cycles? What shocks caused
the Great Recession? ...

• How large is the output gap (ŷt − ŷ f
t )?

• Want to draw from

p(s0:T |θ, y1:T )

• ... but the shocks are not part of s1:t ! Just add them: Create the
variables sεt , defined by

sεt = εt ,

and stack them to st : s̃t = [st , s
ε
t ]. The new tansition equation is:

s̃t = T̃ (θ)s̃t−1 + R̃(θ)εt

where T̃ (θ) and R̃(θ) are adjusted to accommodate sεt .
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State-Space models Latent variables: Smoothing and simulation smoothers

• In terms of Bayesian updating the joint distribution of data and
unobservables (parameters and latent variables) is given by:

p(y1:T , s0:T , θ) = p(y1:T |s0:T , θ)︸ ︷︷ ︸
measurement

p(s0:T |θ)︸ ︷︷ ︸
transition

p(θ)

• We integrate out the states s0:T (Kalman filter):

p(y1:T |θ)p(θ) =




∫
p(y1:T |s0:T , θ)p(s0:T |θ)ds0:T

︸ ︷︷ ︸
p(y1:T |θ)




p(θ)

• ... and write the joint posterior of θ, s0:T | y1:T as marginal times
conditional:

p(s0:T , θ|y1:T ) = p(s0:T |θ, y1:T )p(θ|y1:T )
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State-Space models Latent variables: Smoothing and simulation smoothers

Smoothing and simulation smoothers

• How do we draw from p(s0:T |θ, y1:T )? Realize that (omitting θ from
the conditioning to simplify notation)

p(s0:T |y1:T ) = p(s0|s1:T , y1,T )p(s1:T |y1,T )

=

[
T−1∏

t=0

p(st |st+1:T , y1:T )

]
p(sT |y1:T )

=

[
T−1∏

t=0

p(st |st+1:T , y1:t)

]
p(sT |y1:T ) (∗)

=

[
T−1∏

t=0

p(st |st+1, y1:t)

]
p(sT |y1:T ) (∗∗)

• Step (∗): Why is p(st |st+1:T , y1:T ) = p(st |st+1:T , y1:t)? Note that

yt+j = Zst+j + ut+j , j ≥ 1.

Since ut+j , j ≥ 1 is independent from εt−s , s ≥ 0, there is no
additional information in yt+j about st if I already know st+1.
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State-Space models Latent variables: Smoothing and simulation smoothers

• Step (∗∗): Why is p(st |st+1:T , y1:t) = p(st |st+1, y1:t)? Note that

st+1+j = T jst+1 +

j∑

k=1

T j−kRεt+1+j , j ≥ 1.

Call

st|st+1,y1:t
= E [st |st+1, y1:t ] , st+1+j|st+1,y1:t

= E [st+1+j |st+1, y1:t ]

and realize that conditional on y1:t , st and st+1+j are uncorrelated
and therefore independent (gaussianity):

E
[(
st − st|st+1,y1:t

) (
st+1+j − st+1+j|st+1,y1:t

)′ |st+1, y1:t

]
=

E


(st − st|st+1,y1:t

)
(

j∑

k=1

T j−kRεt+1+j

)′
|st+1, y1:t


 = 0

because E [εt+1+j |ε1:t+1] = 0 (i.i.d. assumption).
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State-Space models Carter and Kohn

Simulation smoother (Carter and Kohn)

• We have established that

p(s0:T |y1:T ) =

[
T−1∏

t=0

p(st |st+1, y1:t)

]
p(sT |y1:T )

• This implies that the sequence s1:T , conditional on y1:T , can be
drawn recursively:

1 Draw sT from p(sT |y1:T )

2 For t = T − 1, .., 0, draw st from p(st |st+1, y1:t)

• How do I draw from p(sT |y1:T )?

• i) I know that sT |y1:T is gaussian, ii) I have sT |T = E [sT |y1:T ] and
PT |T = Var[sT |y1:T ] from the filtering procedure ⇒

sT |y1:T ∼ N
(
sT |T ,PT |T

)
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State-Space models Carter and Kohn

• How do we draw from p(st |st+1, y1:t)? We know that

st+1

st

∣∣∣∣ y1:t ∼ N

(
st+1|t
st|t

[
Pt+1|t TPt|t
Pt|tT

′ Pt|t

])

Note: 1) easy to show that E
[
(st+1 − st+1|t)(st − st|t)

′] = TPt|t , 2)
we know all these matrices from the Kalman filter.

• Then ...

E [st |st+1, y1:t ] = st|t + P ′t|tT
′P−1

t+1|t(st+1 − st+1|t)

Var [st |st+1, y1:t ] = Pt|t − P ′t|tT
′P−1

t+1|tTPt|t

• ... and

st |st+1, y1:t ∼ N (E [st |st+1, y1:t ] ,Var [st |st+1, y1:t ])
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State-Space models Kalman smoothing

Kalman smoothing

• What if I just want to know st|T = E [st |y1:T ] and
Pt|T = Var [st |y1:T ]? (note st|T 6= E [st |st+1, y1:t ]!)

Two approaches:

1 If I’ve run my simulation smoother, I have the draws from the
joint p(s0:T |y1:T ) : s j0:T , j = 1, .., nsim. Take the draws from the

marginal (namely s jt , j = 1, .., nsim) and compute mean and
variance!

2 Kalman smoothing (from the “old days”, when simulation
smoothing was computationally challenging). Again, the
algorithm is recursive:

1 Derive a mapping (st+1|T , Pt+1|T ) → (st|T , Pt|T )

2 Start from (sT |T , PT |T ) and proceed backwards for
t = T − 1, .., 0
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State-Space models Kalman smoothing

• Let’s derive the mapping:

st|T = E [st |y1:T ]

= E [E [st |st+1, y1:T ] |y1:T ] (∗)
= E [E [st |st+1, y1:t ] |y1:T ] (∗∗)

= E
[
st|t + P ′t|tT

′P−1
t+1|t(st+1 − st+1|t)|y1:T

]
(∗ ∗ ∗)

= st|t + P ′t|tT
′P−1

t+1|t(st+1|T − st+1|t) (∗ ∗ ∗∗)

• Step (∗): Law of iterated expectations

• Step (∗∗): Given st+1, yt+1:T contains no additional information
about st (see discussion above)

• Step (∗ ∗ ∗): Plug in formula obtained before

• Step (∗ ∗ ∗∗): All .|t variables are known given y1:T (since
information spanned by y1:t is contained in the information set
spanned by y1:T )
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State-Space models Kalman smoothing

• Similarly

Pt|T = E
[
(st − st|T )(st − st|T )′|y1:T

]

= E [sts
′
t |y1:T ]− st|T s

′
t|T (∗)

= E [E [sts
′
t |st+1, y1:T ] |y1:T ]− st|T s

′
t|T (∗∗)

= E [E [sts
′
t |st+1, y1:t ] |y1:T ]− st|T s

′
t|T (∗ ∗ ∗)

= Pt|t − P ′t|tT
′P−1

t+1|t
(
Pt+1|t − Pt+1|T

)
P−1
t+1|tTPt|t (∗ ∗ ∗∗)

• Step (∗): Var(x) = E (x2)− E (x)2

• Step (∗∗) and (∗ ∗ ∗): same as before

• Homework: you figure out (∗ ∗ ∗∗)
hint: realize that st+1 − st+1|t = st+1 − st+1|T + st+1|T − st+1|t
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State-Space models Kalman smoothing

Some references

Kalman filter/smoother:

• relevant chapter in James D. Hamilton. 1994. Time Series Analysis.
Princeton University Press

Books on simulation smoothers/state-space models:

• James Durbin and Siem Jan Koopman. 2001. Time Series Analysis
by State Space Methods. Oxford University Press

• Chang-Jin Kim and Charles R. Nelson. 1998. State-Space Models
with Regime-Switching: Classical and Gibbs-Sampling Approaches
with Applications. MIT Press

• Giordani, P., M.K. Pitt, and R. Kohn (2011), “Bayesian Inference for
Time Series State Space Models.” In J. Geweke, G. Koop, and H.
van Dijk (eds.), Handbook of Bayesian Econometrics, Oxford
University Press
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State-Space models Kalman smoothing

Fast smoothers: The idea

Durbin and Koopman, A simple and efficient for state space time series
analysis, Biometrika 2002

• Say you have two normally distributed random variables, x and y .
You know how to (i) draw from the joint p(x , y) and (ii) to compute
IE [x |y ].

• You want to generate a draw from x |y0 ∼ N (IE [x |y0],W ) for some
y0. Proceed as follows:

1 Generate a draw (x+, y+) from p(x , y).

By definition, x+ is also a draw from p(x |y+) = N (IE [x |y+],W ) or,
alternatively, x+ − IE [x |y+] is a draw from N (0,W ) .

2 Use IE [x |y0] + x+ − IE [x |y+] is a draw from N (IE [x |y0],W )

Since the variables are normally distributed the scale W does not
depend on the location y (draw a two dimensional normal, or review
the formulas for normal updating, to convince yourself that is the
case). Hence p(x |y+) and p(x |y0) have the same variance W , which
means that IE [x |y0] + x+ − IE [x |y+] is a draw from N (IE [x |y0],W ).
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State-Space models Fast smoothers

Fast smoothers

• Imagine you know how to compute the smoothed estimates of the
shocks IE [ε1:T |y1:T ] (see Koopman, Disturbance smoother for state
space models, Biometrika 1993)

• ... and want to obtain draws from p(ε1:T |y1:T ) (again, we omit θ for
notational simplicity). Proceed as follows:

1 Generate a new draw (ε+
1:T , s

+
1:T , y

+
1:T ) from p(ε1:T , s1:T , y1:T ) by

drawing s0|0 and ε1:T from their respective distributions, and then
using the transition and measurement equations.

2 Compute IE [ε1:T |y1:T ] and IE [ε1:T |y+
1:T ] (and IE [s1:T |y1:T ] and

IE [s1:T |y+
1:T ] if need the states);

3 Compute IE [ε1:T |y1:T ] + ε+
1:T − IE [ε1:T |y+

1:T ] (and
IE [s1:T |y1:T ] + s+

1:T − IE [s1:T |y+
1:T ] ).
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State-Space models Fast smoothers

• Refinement: Given that the conditional expectations IE [ε1:T |y1:T ]
and IE [ε1:T |y+

1:T ] are linear in y , steps 1 and 3 can be sped up by
computing IE [ε1:T |y1:T − y+

1:T ] and then obtaining the draw from
ε+

1:T + IE [ε1:T |y1:T − y+
1:T ]. The last two steps in the algorithm

change as follows:

1 Compute IE [ε1:T |y∗1:T ] (and IE [s1:T |y∗1:T ] if need the states);

2 Compute IE [ε1:T |y∗1:T ] + ε+
1:T (and IE [s1:T |y∗1:T ] + s+

1:T ).

• Here is some Matlab code implementing the Durbin Koopman
smoother.
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State-Space models Forecasting

Forecasting

• How do we generate forecasts yT+1:T+H from a state-space model?
Simple...

p(yT+1:T+H |y1:T ) =
∫

(sT ,θ)

p(yT+1:T+H |sT , θ, y1:T ) p(sT |θ, y1:T )︸ ︷︷ ︸
posterior of sT |θ

p(θ|y1:T )︸ ︷︷ ︸
posterior of θ

d(sT , θ)

where

p(yT+1:T+H |sT , θ, y1:T ) =

∫

sT+1:T+H

p(yT+1:T+H |sT+1:T+H)

p(sT+1:T+H |sT , θ, y1:T )dsT+1:T+H
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State-Space models Forecasting

In words...:

1 Use the Kalman filter to compute mean and variance of the

distribution p(sT |θ(j), y1:T ). Generate a draw s
(j)
T from this

distribution, where θ(j) is a draw from the posterior of θ.

2 Draw from sT+1:T+H |(sT , θ, y1:T ) by generating a sequence of

innovations ε
(j)
T+1:T+H , and iterating the state transition equation

forward starting from s
(j)
T :

s
(j)
t = T (θ(j))s

(j)
t−1 + R(θ(j))ε

(j)
t , t = T + 1, . . . ,T + H.

3 Use the measurement equation to obtain y
(j)
T+1:T+H :

y
(j)
t = D(θ(j)) + Z (θ(j))s

(j)
t , t = T + 1, . . . ,T + H. 2
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State-Space models Forecasting

Point forecasts

• Given a loss function L(yT+h, ŷT+h), find the prediction that
minimizes the posterior expected loss:

ŷT+h|T = argminδ

∫

yT+h

L(yT+h, δ)p(yT+h|y1:T )dyT+h.

• If you have a quadratic loss function

L(yT+h, δ) = tr [(yT+h − δ)′W (yT+h − δ)]

where W is a symmetric positive-definite weight matrix the optimal
predictor is the posterior mean

ŷT+h|T =

∫

yT+h

yT+hp(yT+h|y1:T )dyT+h ≈
1

nsim

nsim∑

j=1

y
(j)
T+h,
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State-Space models Estimation

Estimation of State-space Models

• Come up with a prior p(θ).

• Obtain posterior
p(θ|y1:T ) ∝ p(y1:T |θ)p(θ)

where ∝ comes from the fact that p(y1:T ) does not depend on θ.

• How do I draw from p(θ|y1:T ) when it is unrecognizable? MCMC
(Markov Chain Montecarlo) methods!
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Introduction to MCMC methods

Simulation Methods

• Say you have a posterior

π(θ|y1:T ) = p(y1:T |θ)p(θ)/p(y1:T )

that is is not of known form.

• How do I draw from π(θ|y1:T )? MCMC (Markov Chain Montecarlo)
methods!

• Monte Carlo methods are a class of computational algorithms
that rely on repeated random sampling to compute their
results: Use the computer to generate a (very long) sequence of
draws {θ(1), ..., θ(j−1), θ(j), ..., θ(J)}

• Markov Chain because the way draws are generated follows a
Markov structure: θ(j−1) → θ(j).
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Introduction to MCMC methods

Some references

Textbooks:

• Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin.
Bayesian Data Analysis, Second Edition. Chapman & Hall/CRC
Texts in Statistical Science. comment: great manual for MCMC
methods

• John Geweke. Contemporary Bayesian Econometrics and Statistics.
John Wiley & Sons, Inc. 2005. comment: great overview of Bayesian
methods in econometrics, also, discussion of why MCMC works

• Fabio Canova. Methods for Applied Macroeconomic Research.
Princeton University Press. 2007. comment: overview of
quantitative methods in macroeconomics

• Tony Lancaster. An introduction to modern Bayesian econometrics.
Wiley-Blackwell. 2004 comment: Introduction to Bayesian
econometrics
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Introduction to MCMC methods

• Ed Herbst and Frank Schorfheide. Bayesian Estimation of DSGE
Models. Princeton University Press. 2015. comment: Most updated
book on DSGE Estimation; chapters on SMC and particle filter

Articles:

• Chib and Greenberg. Understanding the Metropolis Hastings
Algorithm. American Statistician, 49(4), 327335, 1995.

• Chib, “Introduction to Simulation and MCMC Methods,” In J.
Geweke, G. Koop, and H. van Dijk (eds.), Handbook of Bayesian
Econometrics, Oxford University Press
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Introduction to MCMC methods Classical Simulation Methods

Classical Simulation Methods: Accept-reject

• This is MC (Monte Carlo) but not MC (Markov Chain)

• The goal is to obtain draws from π(θ). Draw θ from a so-called
proposal or source density q(θ) (we drop the conditioning on y1:T for
simplicity) which is such that, for all θ ∈ Θ:

π(θ) ≤ cq(θ)

(that is c = sup
θ∈Θ

π(θ)

q(θ)
)

• Algorithm: For each iteration j = 1, .., J

1 Propose θ∗ ∼ q(θ) and U ∼ Unif [0, 1]

2 Accept-Reject: set θj = θ∗ if

U ≤ π(θ)

cq(θ)

otherwise repeat (1).

3 Collect {θ(1), ..., θ(J)}
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Introduction to MCMC methods Classical Simulation Methods

• Dots are Ucq(θ). Reject if Ucq(θ) > π(θ).

• Intuition: Reject if the “gap” between proposal q(θ) and true
distribution π(θ) is large.

Thus, c = supθ∈Θ {π(θ|y)/q(θ|y)}. Note that the accept-reject method does not require

knowledge of the normalizing constant of π because that constant can be absorbed in c.

Then, in the accept-reject method, one draws a variate from q, accepting it with probability

π(θ|y)/{cq(θ|y)}. If the particular proposal is rejected, a new one is drawn and the process

continued until one is accepted. The accepted draws constitute an iid sample from π. The

efficiency of this method depends on c which essentially is equal to the expected number of

draws from q before one is accepted.

Algorithm: Accept-reject

Step 1: In each iteration g, g = 1, . . . , G,

• Propose

θ† ∼ h(θ†) ; and independently U ∼ Unif(0, 1)

• Accept-reject Let θ(g) = θ† if

U ≤ π(θ†|y)

cq(θ†|y)

otherwise go to Propose

Step 2: Return the values {θ(g)} .

The idea behind this algorithm may be explained quite simply using Figure 1. Imagine

π(θ|y)
cq(θ|y)
rejected
accepted

Figure 1: Accept-reject method. The x-coordinate of the points below the target density are
accepted.

5
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Introduction to MCMC methods Classical Simulation Methods

• Example: drawing from truncated standard normal using standard
normal as proposal (note: c = 2).

drawing random bivariate points in the region bounded above by the function cq(θ|y) and

below by the x-axis. A point in this region may be drawn by first drawing θ† from q(θ|y),

which fixes the x-coordinate of the point, and then drawing the y-coordinate of the point as

Ucq(θ†). Now, if Ucq(θ†|y) ≤ π(θ†|y), the point lies below π and is accepted; but the latter

is simply the acceptance condition of the AR method, which completes the justification.

Example The accept-reject method is sometimes applied to sampling a target density that is

truncated to a non-standard region. In that case, one draws from the untruncated distribution.

If the draw lies in the truncated region it is accepted; otherwise the process until a value that

satisfies the truncation is found. As a simple example of this approach, consider sampling a

standard normal distribution that is truncated to (0,∞). This is the half-normal distribution.

If the proposal distribution is taken to be untruncated distribution, as in Figure 2, it is clear

-4 -2 0 2 4

0.2

0.4

0.6

0.8

Target N(0,∞)(0, 1)

Proposal N(0, 1)

Figure 2: Half-normal target and the source density for the accept reject method.

that the value c = 2 times the proposal bounds the target. The problem, however, is that

although 2N (θ|0, 1) perfectly bounds the target on (0,∞) it is quite badly matched to the

target on the interval (−∞, 0). This is the generic problem with this approach to sampling a

truncated distribution.

2.2 Importance sampling

Suppose that one is interested in calculating the value of the integral

I =

∫

Θ
h(θ)π(θ|y)dθ

6
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Importance Sampling

• Say you want to compute

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ

where π(θ) =
k(θ)∫
k(θ)dθ

– that is, k(θ) is the kernel.

• That is equal to:

Eπ[h(θ)] =

∫
h(θ) k(θ)

q(θ)q(θ)dθ
∫ k(θ)

q(θ)q(θ)dθ
=

IE q[h(θ) k(θ)
q(θ) ]

IE q[ k(θ)
q(θ) ]

so the following should be a reasonable estimator

h̄J =
1

J

∑

j

w(θ(j))h(θ(j))
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Introduction to MCMC methods Classical Simulation Methods

• Importance sampling works as long as the importance weights

w(θ(j)) =
k(θ(j))/q(θ(j))

1
J

∑
j k(θ(j))/q(θ(j))

are bounded as a function of θ (see Geweke 2005 for more details).

• Key advantage of importance sampling relative to accept-reject is
that in the former you do not have to know/compute the bound
(you just have to know that they are bounded), in the latter you
have to know c .
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Introduction to MCMC methods Classical Simulation Methods

Illustration

If θi ’s are draws from q(·) then

Eπ[h] ≈
1
J

∑J
i=1 h(θi )w(θi )

1
J

∑J
i=1 w(θi )

, w(θ) =
k(θ)

q(θ)
.
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Introduction to MCMC methods Classical Simulation Methods

Accuracy

• Since we are generating iid draws from q(θ), it’s fairly
straightforward to derive a CLT:

• It can be shown that
√
J(h̄J−Eπ[h]) =⇒ J

(
0,Ω(h)

)
, where Ω(h) = Vq[(π/q)(h−Eπ[h])].

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize
Ω(h) as follows:

Ω(h) ≈ Vπ[h]
(
Vq[π/q] + 1

)
.

The approximation highlights that the larger the variance of the
importance weights, the less accurate the Monte Carlo
approximation relative to the accuracy that could be achieved with
an iid sample from the posterior.

• Users often monitor

ESS = J
Vπ[h]

Ω(h)
≈ J

1 + Vq[π/q]
.

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 60 / 172



Introduction to MCMC methods Classical Simulation Methods

Sampling Importance Re-sampling (SIR)

• How can we get draws (as opposed to just moments) from π(θ)?

• Since π(θ) =
π(θ)

q(θ)
q(θ), then if {θ(1), ..., θ(J)} are draws from q(θ)

the target can be expressed as the discreet distribution

π̂(θ) = w(θ(j))δ(θ − θ(j))

with δ(θ − θ(j)) = 1 if θ = θ(j) and zero otherwise (Dirac).
• Call {θ(1), ..., θ(J)} particles.
• So to get new particles {θ∗(1), ..., θ∗(L)} just resample {θ(1), ..., θ(J)}

with replacement with probabilities {w(θ(j))}.

That this method works is easily checked. Under π̂(θ|y), and for any measurable set A,

Pr(θ ∈ A|y) =

G∑

g=1

w(θ(g),y)I[θ(g) ∈ A]

→
∫

Θ p(y|θ)π(θ)/q(θ|y)I[θ ∈ A]q(θ|y)dθ∫
Θ p(y|θ)π(θ)/q(θ|y)q(θ|y)dθ

=

∫
A p(y|θ)π(θ)dθ∫
Θ p(y|θ)π(θ)dθ

=

∫

A
π(θ|y)dθ

as L and G both increase with L/G going to zero and provided the expectations are bounded.

Rubin (1988) has called this the sampling importance re-sampling or SIR method.

θθ(g)

π(θ|y)
q(θ|y)

Figure 3: SIR method: Incoming particles are rewighted (resampled) according to probabilities
proportional to the ratio of the target to the proposal density.

We illustrate this method in Figure 3 which shows how the particle θ(g) gets weights

according to the importance of the ratio of the target to the proposal.

The SIR approach is now also heavily used in non-linear state-space models where it is

referred to as particle filtering, a method that was introduced into econometrics in Kim, Shep-

hard, and Chib (1998). Particle filtering is discussed in several recent papers, for example,

Del Moral, Doucet, and Jasra (2006) and is extensively discussed in Kohn et al. (this volume).

3 Metropolis-Hastings algorithm

Suppose that we are interested in sampling the target density π(θ|y), where θ is the parameter

vector and π(θ|y) is a continuous density. The idea behind the M-H algorithm is to simulate a

convenient transition density q(θ,θ†|y), where (θ,θ†) are any two points, and then to modify

the transition density to ensure that the modified Markov chain has the correct limiting dis-

tribution. The source density q(θ,θ†|y) is called the candidate generating density or proposal

8
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Introduction to MCMC methods Metropolis Hastings

MCMC

• Imagine you have a (proper, ie.

∫
K (θ, θ†)dθ† = 1 ) transition

kernel K (θ, θ†) that is reversible, i.e., that satisfies

K (θ, θ†)π(θ) = K (θ†, θ)π(θ†)

(the likelihood of moving from θ to θ† is the same as the likelihood
of the reverse move)

• ... then it is also invariant, i.e.

π(θ†) =

∫
K (θ, θ†)π(θ)dθ

(once you have converged to π(θ), you remain in π(θ)).

• History. From the question “What does K (θ, θ†) converge to?” to
“How can I build a K (θ, θ†)converging to π(θ)? ”
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Introduction to MCMC methods Metropolis Hastings

Metropolis-Hastings Algorithm

• Draw θ∗ from a so-called proposal density q(θ∗|θ(j−1)).

• Set θ(j) = θ∗ with probability

α(θ∗|θ(j−1)) = min

{
1,

π(θ∗|y1:T )/q(θ∗|θ(j−1))

π(θ(j−1)|y1:T )/q(θ(j−1)|θ∗)

}

and θ(j) = θ(j−1) otherwise.
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Introduction to MCMC methods Metropolis Hastings

• Why does MH work – that is, why is it reversible?

• Imagine the case where

q(θ∗|θ)π(θ) > q(θ|θ∗)π(θ∗)

(more likely to move θ −→ θ∗ than θ∗ −→ θ)

• We can “correct the flow” by introducing probabilities α(θ∗|θ) and
α(θ|θ∗) such that

α(θ∗|θ)q(θ∗|θ)π(θ) = q(θ|θ∗)π(θ∗)α(θ|θ∗)

• Specifically, make α(θ|θ∗) as high as possible (α(θ|θ∗) = 1) and
then choose

α(θ∗|θ) =
q(θ|θ∗)π(θ∗)

q(θ∗|θ)π(θ)
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Introduction to MCMC methods Metropolis Hastings

• But since you do not always make a move, the kernel KMH(θ, θ†)
has actually two components:

KMH(θ, θ†) = α(θ†|θ)q(θ†|θ) + δ(θ† − θ)r(θ)

where δ(θ†) is the Dirac function

δ(θ† − θ) =

{
1 if θ = θ†

0 otherwise.

and

r(θ) =

∫
(1− α(θ†|θ))q(θ†|θ)dθ† = 1−

∫
α(θ†|θ)q(θ†|θ)dθ†

(note:

∫
α(θ†|θ)q(θ†|θ)dθ† is the average acceptance probability)

• Easy to show that

KMH(θ, θ†)π(θ) = KMH(θ†, θ)π(θ†)

since
δ(θ† − θ)r(θ)π(θ) = δ(θ − θ†)r(θ†)π(θ†)

(both sides 6= 0 only when θ = θ†)
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Introduction to MCMC methods Metropolis Hastings

Random Walk Metropolis-Hastings Algorithm

• In Random-Walk Metropolis: q(θ∗|θ(j−1)) = q(θ(j−1)|θ∗) e.g.

θ∗ = θ(j−1) + N(0, Ṽ )

and the expression simplifies to

α(θ∗|θ(j−1)) = min

{
1,

π(θ∗|y1:T )

π(θ(j−1)|y1:T )

}

Random walk proposals Given the current value θ, the proposal is drawn as

θ† = θ + z

where z follows some symmetric distribution q such as the multivariate normal with mean of

zero and some covariance matrix τV, which is adjusted in trial runs to reach some desired

acceptance rate (given by the proportion of proposed values that are accepted). Because of

the symmetry of the increment distribution it follows that q(θ,θ†|y) = q(θ†,θ|y) and hence,

due to the cancellation of the q terms, the M-H probability of move takes the simplified form

α(θ,θ†|y) = min

{
1,
π(θ†|y)

π(θ|y)

}

as a function solely of the target density, as illustrated in Figure 4. Although the random walk

π(θ|y)
q(θ, θ†|y)

θ(g) θ†

currentθ(g)

θ† proposal

Figure 4: Random-walk M-H: The two points that determine the probability of move.

M-H proposal is quite popular in applications it can be difficult to tune, especially when the

dimension of θ is large. In such cases, it is difficult to generate reasonable acceptance rates

and large enough moves to ensure a full exploration of the posterior surface.

Independent proposals Another common strategy is to set q(θ,θ†|y) = q(θ†|y), an inde-

pendence M-H chain in the terminology of Tierney (1994). In this case,

α(θ,θ†|y) = min

{
1,
π(θ†|y)

π(θ|y)

q(θ|y)

q(θ†|y)

}

which involves the ratio of targets and the ratio of proposal densities, as shown in Figure 5.

One way to implement such chains is by tailoring the proposal density to the target at the mode

14

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 66 / 172



Introduction to MCMC methods Metropolis Hastings

Multiple Blocks Metropolis-Hastings Algorithm

• Partition θ into two blocks {θ1, θ2}, and devise proposal densities
q(θ∗1 |θ1, θ2) and q(θ∗2 |θ1, θ2). Algorithm:

1 Draw θ∗1 from q(θ∗1 |θ1, θ2). Set θ
(j)
1 = θ∗1 with probability

α(θ∗1 |θ(j−1)
1 , θ

(j−1)
2 ) = min

{
1,

π(θ∗1 , θ
(j−1)
2 )/q(θ∗1 |θ

(j−1)
1 , θ

(j−1)
2 )

π(θ
(j−1)
1 , θ

(j−1)
2 )/q(θ

(j−1)
1 |θ∗1 , θ

(j−1)
2 )

}

and θ
(j)
1 = θ

(j−1)
1 otherwise.

2 Draw θ∗2 from q(θ∗2 |θ1, θ2). Set θ
(j)
2 = θ∗2 with probability

α(θ∗2 |θ(j)
1 , θ

(j−1)
2 ) = min

{
1,

π(θ
(j)
1 , θ∗2 )/q(θ∗2 |θ

(j)
1 , θ

(j−1)
2 )

π(θ
(j)
1 , θ

(j−1)
2 )/q(θ

(j−1)
2 |θ(j)

1 , θ∗2 )

}

and θ
(j)
2 = θ

(j−1)
2 otherwise.
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Introduction to MCMC methods Gibbs Sampler

Gibbs Sampler

• Requirements: Suppose the parameter vector θ can be partitioned
into θ = [θ′1, . . . , θ

′
m]′. For each i it is possible to generate draws of

θi from the conditional distribution π(θi |θ−i ,Y ) where θ−i denotes
the vector θ without the partition θi .

• For j = 1, . . . , J:

1 Draw θ
(j)
1 from the density π(θ1|θ(j−1)

2 , . . . , θ(s)
m ,Y ).

2 Draw θ
(j)
2 from the density π(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ(j−1)

m ,Y ).

3 · · ·

4 Draw θ(j)
m from the density π(θm|θ(j)

1 , . . . , θ
(j)
m−1,Y ). 2
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Introduction to MCMC methods Gibbs Sampler

• Why does it work? Think of Gibbs Sampler as a Multiple Move MH
with proposals (in the 2 blocks case) q(θ∗1 |θ1, θ2) = π(θ1|θ2) and
q(θ∗2 |θ1, θ2) = π(θ2|θ1).

• Note that
π(θ∗1 , θ

(j−1)
2 )

π(θ
(j−1)
1 , θ

(j−1)
2 )

=
π(θ∗1 |θ

(j−1)
2 )

π(θ
(j−1)
1 |θ(j−1)

2 )

and hence

α(θ∗1 |θ(j−1)
1 , θ

(j−1)
2 ) = min

{
1,

π(θ∗1 , θ
(j−1)
2 )/q(θ∗1 |θ

(j−1)
1 , θ

(j−1)
2 )

π(θ
(j−1)
1 , θ

(j−1)
2 )/q(θ

(j−1)
1 |θ∗1 , θ

(j−1)
2 )

}

= min

{
1,

π(θ∗1 |θ
(j−1)
2 )/π(θ∗1 |θ

(j−1)
2 )

π(θ
(j−1)
1 |θ(j−1)

2 )/π(θ
(j−1)
1 |θ(j−1)

2 )

}

= 1

• You always accept! Same for the other block.
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Introduction to MCMC methods Gibbs Sampler

Another Take on the Gibbs Sampler

• What’s the idea? Suppose you want to draw from

π(θ1, θ2)

and you don’t know how ...

• But you know how to draw from

π(θ1|θ2) ∝ π(θ1, θ2) and π(θ2|θ1) ∝ π(θ1, θ2)

• Gibbs sampler: you obtain draws from π(θ1, θ2) by drawing
repeatedly from π(θ1|θ2) and π(θ2|θ1)
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Introduction to MCMC methods Gibbs Sampler

Why does it work?

• Some theory of Markov chains.

• Say you want to draw from the marginal π(θ1) (note, by Bayes’ law
if you have draws from the marginal you also have draws from the
joint π(θ1, θ2)).

• If you find a Markov transition kernel K (θ1, θ
†
1) that solves the

fixed point integral equation:

π(θ†1) =

∫
K (θ1, θ

†
1)π(θ1)dθ1

(and that is π∗-irreducible and aperiodic) ...

• Then if you generate draws θ
(j)
1 , j = 1, ..., J starting from θ

(0)
1 ,

|K (A, θ
(0)
1 )m − π(A)| → 0 for any set A and any θ1

and
1

J

∑

j

h(θ
(j)
1 )→

∫
h(θ1)π(θ1)dθ1
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Introduction to MCMC methods Gibbs Sampler

Why does it work?

• But wait... the Gibbs sample does provide a Markov transition kernel

K (θ1, θ
†
1) =

∫
π(θ†1|θ2)π(θ2|θ1)dθ2

• ... that solves the fixed point integral equation:

π(θ†1) =

∫
K (θ1, θ

†
1)π(θ1)dθ1

=

∫ (∫
π(θ†1|θ2)π(θ2|θ1)dθ2

)
π(θ1)dθ1

=

∫
π(θ†1|θ2)

(∫
π(θ2|θ1)π(θ1)dθ1

)
dθ2

=

∫
π(θ†1|θ2)π(θ2)dθ2 = π(θ†1)

(and sufficient conditions for π∗-irreducibility and aperiodicity are
usually met, see Chib and Greenberg 1996).
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Introduction to MCMC methods SMC

SMC (Sequential Monte Carlo)

• “Standard” MCMC can be inaccurate, especially in medium and
large-scale DSGE models

• Modify MCMC algorithms to overcome weaknesses: blocking of
parameters; tailoring of (mixture) proposal densities

• Sequential Monte Carlo (SMC): (more precisely, sequential
importance sampling):

• Better suited to handle irregular and multimodal posteriors
associated with large DSGE models.

• Algorithms can be easily parallelized.

• SMC = “Importance Sampling on steroids”

• Theoretical work: Chopin (2004); Del Moral, Doucet, Jasra
(2006)

• Applied work: Creal (2007); Durham and Geweke (2011, 2012)
• For DSGE applications: Ed Herbst and Frank Schorfheide.

Bayesian Estimation of DSGE Models. Princeton University
Press. 2015.
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Introduction to MCMC methods SMC

From Importance Sampling to Sequential Importance
Sampling

• In general, it’s hard to construct a good proposal density q(θ),

• especially if the posterior has several peaks and valleys.

• Idea - Part 1: it might be easier to find a proposal density for

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
kn(θ)

Zn
.

at least if φn is close to zero.

• Idea - Part 2: We can try to turn a proposal density for πn into a
proposal density for πn+1 and iterate, letting φn −→ φN = 1.
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Introduction to MCMC methods SMC

Illustration:

• Our state-space model:

yt = [1 1]st , st =

[
θ2

1 0
(1− θ2

1)− θ1θ2 (1− θ2
1)

]
st−1 +

[
1
0

]
εt .

• Innovation: εt ∼ iidN(0, 1).

• Prior: uniform on the square 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1.

• Simulate T = 200 observations given θ = [0.45, 0.45]′, which is
observationally equivalent to θ = [0.89, 0.22]′
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Introduction to MCMC methods SMC

Illustration: Tempered Posteriors of θ1

θ1

0.0
0.2

0.4
0.6

0.8
1.0

n
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0

1
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5

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
kn(θ)

Zn
, φn =

(
n

Nφ

)λ
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Introduction to MCMC methods SMC

Illustration: Posterior Draws

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
θ2
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Introduction to MCMC methods SMC

SMC Algorithm: A Graphical Illustration

C S M C S M C S M

−10

−5

0

5

10

φ0 φ1 φ2 φ3

• πn(θ) is represented by a swarm of particles {θjn,W j
n}Jj=1:

h̄n,J =
1

J

J∑

j=1

W j
nh(θjn)

a.s.−→ Eπn [h(θn)].

• C is Correction; S is Selection; and M is Mutation.
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Introduction to MCMC methods SMC

SMC Algorithm

1 Initialization. (φ0 = 0). Draw the initial particles from the prior:

θi1
iid∼ p(θ) and W j

1 = 1, j = 1, . . . , J.

2 Recursion. For n = 1, . . . ,Nφ,

1 Correction. Reweight the particles from stage n − 1 by
defining the incremental weights

w̃ j
n = [p(Y |θjn−1)]φn−φn−1

and the normalized weights

W̃ j
n =

w̃ j
nW

j
n−1

1
J

∑J
j=1 w̃

j
nW

j
n−1

, j = 1, . . . , J.

An approximation of Eπn [h(θ)] is given by

h̃n,J =
1

J

J∑

j=1

W̃ j
nh(θjn−1).

2 Selection.
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Introduction to MCMC methods SMC

SMC Algorithm

1 Initialization.
2 Recursion. For n = 1, . . . ,Nφ,

1 Correction.
2 Selection. (Optional Resampling) Let {θ̂}Jj=1 denote J iid

draws from a multinomial distribution characterized by support
points and weights {θjn−1, W̃

j
n}Jj=1 and set W j

n = 1.
An approximation of Eπn [h(θ)] is given by

ĥn,J =
1

J

J∑

j=1

W j
nh(θ̂jn).

3 Mutation. Propagate the particles {θ̂i ,W j
n} via NMH steps of a

MH algorithm with transition density θjn ∼ Kn(θn|θ̂jn; ζn) and
stationary distribution πn(θ). An approximation of Eπn [h(θ)] is
given by

h̄n,J =
1

J

J∑

j=1

h(θjn)W j
n .
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Introduction to MCMC methods SMC

Remarks

• Correction Step:

• reweight particles from iteration n − 1 to create importance
sampling approximation of Eπn [h(θ)]

• Selection Step: the resampling of the particles

• (good) equalizes the particle weights and thereby increases
accuracy of subsequent importance sampling approximations;

• (not good) adds a bit of noise to the MC approximation.

• Mutation Step:

• adapts particles to posterior πn(θ);
• imagine we don’t do it: then we would be using draws from

prior p(θ) to approximate posterior π(θ), which can’t be good!
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Applications of state space models TV-VARs

TV-VARs

• VARs with time-varying parameters (Cogley and Sargent, “Evolving
Post-World War II U.S. Inflation Dynamics,” NBER MacroAnnual
2001)

• The model:

yt = ct + Φ1,tyt−1 + · · ·+ Φk,tyt−p +ut , ut ∼ N (0,Σ), t = 1, . . . ,T

where yt and ut are n × 1 vectors of observables and innovations, ct
is an n × 1 vector of time-varying intercepts,
Φ1,t , . . . ,Φp,t , t = 1, . . . ,T , and Σ are n × n matrices.
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Applications of state space models TV-VARs

• We can rewrite the VAR as:

yt = Φ′txt + ut

or equivalently as:
yt = X ′tϕt + ut

where xt = [1, y ′t−1, . . . , y
′
t−p]′, X ′t = In ⊗ x ′t ,

Φ′t = [ct ,Φ1,t , . . . ,Φp,t ], and ϕt = vec(Φt).

• Note Φ′txt = vec(x ′tΦt In) = (In ⊗ x ′t)vec(Φt).
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Applications of state space models TV-VARs

• Assume RW law of motion:

ϕt = ϕt−1 + νt , νt ∼ N (0,Q)

with Q being an appropriately-sized positive definite matrix, and

ϕ0 ∼ N (φ,Sφ)

where in Cogley and Sargent φ,Sφ are the maximum likelihood
mean and variance from pre-sample estimation of a fixed
-parameters VAR (alternatively one can use Minnesota prior)

• Belmonte et al. (2011) use the parameterization

ϕt = ϕ︸︷︷︸
fixed component

+ ϕ̃t︸︷︷︸
TV component

, ϕ̃0 = 0,

(note that under RW ϕ0 is not identified; if you assume a stationary
law of motion you can identify it), where ϕ has a Minnesota prior
and

ϕ̃t = ϕ̃t−1 + νt , νt ∼ N (0,Q)
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Applications of state space models TV-VARs

• Assume independent inverted-Wishart distributions (IW(., .)) with
parameters (Σ̄, νΣ), (Q̄, νQ), respectively:

p(Σ) =
|Σ̄|νΣ/2

2nνΣ/2Γ(νΣ/2)
|Σ|−(n+νΣ+1)/2 exp

(
−1

2
tr(Σ−1Σ̄)

)
,

p(Q) =
|Q̄|νQ/2

2nνQ/2Γ(νQ/2)
|Q|−(n+νQ+1)/2 exp

(
−1

2
tr(Q−1Q̄)

)
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Applications of state space models TV-VARs

TV-VARs: Gibbs Sampler

For s = 1, . . . , nsim:

1 ϕ
(s)
t |Q(s−1),Σ(s−1), y1:T : Use the simulation smoother (e.g., in

Durbin Koopman 2002), where:

yt = X ′tϕt + ut , ut ∼ N (0,Σ)

is a system of measurement equations and

ϕt = ϕt−1 + νt , νt ∼ N (0,Q)

is the system of transition equations.

2 Q(s)|ϕ(s)
t ,Σ(s−1), y1:T : The product of the law of motion of ϕt and

the prior yields:

Q(s)| · · · ∼ IW(Q̄ + TŜϕ, νQ + T ).

where Ŝϕ =

∑T
t=1(ϕt − ϕt−1)(ϕt − ϕt−1)′

T
.
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Applications of state space models TV-VARs

3 Σ(s)|ϕ(s)
t ,Q(s), y1:T : The product of the likelihood and the prior

yields:
Σ(s)| · · · ∼ IW(Σ̄ + TŜ , νΣ + T ).

where Ŝ =

∑T
t=1(yt − X ′tϕt)(yt − X ′tϕt)

′

T
.

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 87 / 172



Applications of state space models Stochastic Volatility

Stochastic Volatility

• Model (the univariate case):

yt = σtεt , εt ∼ N (0, 1)

where
σt = eσ̃t

and
σ̃t = µ+ ρσ̃t−1 + ζt , ζt ∼ N (0, ω2), i.i.d. t,

with ρ < 1. Call θ = {µ, ρ, ω2}.
• If ρ = 1 (Primiceri 2005)

σ̃t = σ̃t−1 + ζt , ζt ∼ N (0, ω2), i.i.d. t,

with σ̃0 becoming an additional parameter.
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Applications of state space models Stochastic Volatility

Kim, Shephard, Chib (1998)

• Jacquier, Polson, Rossi (1994) provide an alternative approach, but
“single move”’ (one σ̃t at the time) → slow

• Taking squares and then logs of yt = σtεt , we obtain:

e∗t = 2σ̃t + ε∗t

where e∗t = log(y2
t + c), c = .001 being an offset constant, and

ε∗t = log(ε2
t ).

• If ε∗t were normally distributed, σ̃1:T could be drawn using standard
methods for state-space systems. In fact, ε∗t is distributed as a
log(χ2

1).
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Applications of state space models Stochastic Volatility

• KSC address this problem by approximating the log(χ2
1) with a

mixture of normals, that is, expressing the distribution of ε∗t as:

p(ε∗t ) =
K∑

k=1

π∗kN (m∗k − 1.2704, ν∗ 2
k )

The parameters that optimize this approximation, namely
{π∗k ,m∗k , ν∗k }Kk=1 and K , are given in KSC for K = 7 (or K = 10 in
Omori, Chib, Shepard, Nakajima JoE 2007). Note that these
parameters are independent of the specific application.

• The mixture of normals can be equivalently expressed as:

ε∗t |ςt = k ∼ N (m∗k − 1.2704, ν∗ 2
k ), Pr(ςt = k) = π∗k .

• Effectively we are replacing the true likelihood p(y1:T |θ, σ̃1:T ) with
the mixture-of-normal approximation∫

p̃(y1:T |σ̃1:T , θ, ς1:T )π(ς1:T )dς1:T
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SV: Gibbs sampler

1 ς
(s)
1:T |σ̃

(s−1)
1:T , .., y1:T : Use

Pr{ςt = k|σ̃1:T , e
∗
1:T} ∝ π∗kν−1

k exp

[
− 1

2ν∗ 2
k

(ε∗t −m∗k + 1.2704)2

]
.

where ε∗t = e∗t − 2σ̃t .

2 σ̃
(s)
1:T |ς

(s)
1:T , θ

(s−1), y1:T using

e∗t = 2σ̃t + m∗k(ςt)− 1.2704 + ηt , ηt ∼ N (0, ν∗k (ςt)
2)

as measurement equations and

σ̃t = µ+ ρσ̃t−1 + ζt , ζt ∼ N (0, ω2),

as transition equation.
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3 θ(s)|σ̃(s)
1:T , ς

(s)
1:T , y1:T : This is a standard regression problem:

σ̃t = µ+ ρσ̃t−1 + ζt , ζt ∼ N (0, ω2).

• Note that steps 2 and 3 can be integrated in a single block by
drawing

p(σ̃1:T |θ, ς1:T , y1:T )p(θ|ς1:T , y1:T )

where

• σ̃1:T are integrated out using the Kalman filter −→ θ is drawn
from p(θ|ς1:T , y1:T ) using MH.

• p(σ̃1:T |θ, ς1:T , y1:T ) are drawn using the simulation smoother
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An Example of a Wrong Gibbs Sampler

• This is an example from Del Negro, Primiceri (2013) “Time Varying
Structural Vector Autoregressions and Monetary Policy: A
Corrigendum”, which corrects a mistake in Primiceri (2005)

• Take the model of Kim, Shepard, Chib (1998), except for the
constant θ:

yt = θ + σtεt , εt ∼ N (0, 1)

where yt is univariate and

σt = eσ̃t

and
σ̃t = σ̃t−1 + ζt , ζt ∼ N (0, ω2), i.i.d. t

• Assume you know ω2 and the initial condition σ̃0 for simplicity.
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Applications of state space models An Example of a Wrong Gibbs Sampler

Primiceri’s Gibbs Sampler

• This is a three-block Sampler in σ̃1:T , ς1:T , θ

1 Draw σ̃1:T from
p̃ (σ̃1:T |y1:T , θ, ς1:T ) ∝ p̃(y1:T |σ̃1:T , θ, ς1:T ) · p(σ̃1:T ). Specifically, use

e∗t = 2σ̃t + m∗k(st)− 1.2704 + ηt , ηt ∼ N (0, ν∗k (st)
2),

where e∗t = log
(

(yt − θ)2 + c
)

, c = .001 being an offset constant,

and ε∗t = log(ε2
t ), as measurement equations and

σ̃t = σ̃t−1 + ζt , ζt ∼ N (0, ω2),

as transition equation

• Use simulation smoothers (Carter and Kohn 1994, Durbin and
Koopman 2001)
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2 Draw ς1:T from p̃ (ς1:T |y1:T , σ̃1:T , θ) ∝ p̃(y1:T |ΣT , θ, ς1:T ) · π(ς1:T ).
Specifically, use

Pr{st = k|σ̃1:T , e
∗
1:T} ∝ π∗kν−1

k exp

[
− 1

2ν∗ 2
k

(ε∗t −m∗k + 1.2704)2

]
.

where ε∗t = e∗t − 2σ̃t .

3 Draw θ from p (θ|y1:T , σ̃1:T ) ∝ p(y1:T |σ̃1:T , θ) · p(θ). Standard GLS
regression:

yt = θ + σtεt , εt ∼ N (0, 1)
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Two Problems with Primiceri’s Gibbs Sampler

1 Steps (1) and (2) use the approximate likelihood p̃(.), step (3) uses
the true likelihood p(.)

• KSC do not have step (3) → they only use p̃(.) → they can
address the approximation issue by re-weighting all draws by the
ratio of true vs approximate likelihood at the end of the sampler
(re-weigthing usually makes little difference)

• Step (3) prevents us from using this fix

2 This is not a correct three-block sampler!

1 Draw σ̃1:T from p̃ (σ̃1:T |y1:T , θ, ς1:T )

2 Draw ς1:T from p̃ (ς1:T |y1:T , σ̃1:T , θ)

3 Draw θ from p (θ|y1:T , σ̃1:T , ???)
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• Using p (θ|y1:T , σ̃1:T , ς1:T) in step (3) is not a (convenient) solution
in macro models: Conditional on ς1:T , ε∗t = log(ε2

t ) is Gaussian, but
this means that εt is no longer Gaussian in yt = θ + σtεt
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A Solution to Problem # 2

• Assume for now that the mixture-of-normal distribution is correct:

p(y1:T |θ, σ̃1:T ) =

∫
p̃(y1:T |σ̃1:T , θ, ς1:T )π(ς1:T )dς1:T (1)

• Say you know how to obtain draws {θ(j),ΣT (j), sT (j)}nsj=1 from the
joint

p̃(σ̃1:T , θ, ς1:T |y1:T ) = p̃(y1:T |ΣT , θ, ς1:T ) · p(σ̃1:T , θ) · π(ς1:T )

• Then the draws {θ(j),ΣT (j)}nsj=1 obtained this way are what we want
since (1) implies

∫
p̃(σ̃1:T , θ, ς1:T |y1:T )dς1:T = p(y1:T |ΣT , θ) · p(σ̃1:T , θ)
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A Solution to Problem # 2

• We can draw from the joint p̃(σ̃1:T , θ, ς1:T |y1:T ) using the following
sampler

1 Draw σ̃1:T from
p̃
(
ΣT |y1:T , θ, ς1:T

)
∝ p̃(y1:T |σ̃1:T , θ, ς1:T ) · p(σ̃1:T |θ)

2 Draw (θ, ς1:T ) from p̃ (θ, ς1:T |y1:T , σ̃1:T ), which is accomplished
by

(i) Drawing θ from the marginal
p (θ|y1:T , σ̃1:T ) ∝ p(y1:T |σ̃1:T , θ) · p(θ|σ̃1:T ).

(ii) Drawing ς1:T from the conditional
p̃ (ς1:T |y1:T , σ̃1:T , θ) ∝ p̃(y1:T |ΣT , θ, ς1:T ) · π(ς1:T ).

• In step (2.i) we are entitled to use p(.) (and not p̃(.)) because we
have integrated out the ς1:T and

p(y1:T |θ, σ̃1:T ) =

∫
p̃(y1:T |σ̃1:T , θ, ς1:T )π(ς1:T )dς1:T

• These are exactly the same steps as in Primiceri, but we need to
draw ς1:T right before σ̃1:T !
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A Solution to Problem # 1 (Approximation)

• As long as the number of components in the mixture is large enough
(10?) this is not a big deal.

• Stroud, Müller and Polson (2003) show how to fix it

• Construct a joint posterior of σ̃1:T , θ and ς1:T as follows:

p(θ, σ̃1:T , ς1:T |y1:T ) = p(θ, σ̃1:T |y1:T ) · p̃(ς1:T |σ̃1:T , θ, y1:T )

∝ p(y1:T |θ, σ̃1:T ) · p(σ̃1:T , θ)︸ ︷︷ ︸
original posterior

·p̃(ς1:T |σ̃1:T , θ, y1:T ), (2)

with

p̃(ς1:T |σ̃1:T , θ, y1:T ) =
p̃(y1:T |ΣT , θ, ς1:T ) · π(ς1:T )

c(σ̃1:T , θ, y1:T )
, (3)

where c(σ̃1:T , θ, y1:T ) ≡
∫

p̃(y1:T |ΣT , θ, ς1:T )π(ς1:T )dς1:T

guarantees that the density in (3) integrates to one.
• Obviously drawing from (2) yields the correct draws
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The Correct Algorithm

1 Draw σ̃1:T from p (σ̃1:T |y1:T , θ, ς1:T ) as follows: Draw a candidate

σ̃†1:T from the proposal density p̃ (σ̃1:T |y1:T , θ, ς1:T ) of Algorithm 2,
and set

σ̃
(j)
1:T =

{
σ̃†1:T with probability α

σ̃
(j−1)
1:T with probability 1− α ,

where the superscript (j) denotes the iteration of the sampler, and
where

α =
p
(
σ̃†1:T |y1:T , θ, ς1:T

)

p
(
σ̃

(j−1)
1:T |y1:T , θ, ς1:T

)
p̃
(
σ̃

(j−1)
1:T |y1:T , θ, ς1:T

)

p̃
(
σ̃†1:T |y1:T , θ, ς1:T

) .

• The acceptance probability can be rewritten as

α =
p(y1:T |θ, σ̃†1:T )

p(y1:T |θ,Σ(j−1) T )

c(σ̃
(j−1)
1:T , θ, y1:T )

c(σ̃†1:T , θ, y1:T )
.

where where c(σ̃1:T , θ, y1:T ) ≡
∫

p̃(y1:T |ΣT , θ, ς1:T )π(ς1:T )dς1:T is

precisely the mixture-of-normal approximation!
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The Correct Algorithm

2 Draw (θ, ς1:T ) from p
(
θ, ς1:T |y1:T ,Σ

T
)
, which is accomplished by

(i) Drawing θ from

p (θ|y1:T , σ̃1:T ) =

∫
p(θ, ς1:T |y1:T , σ̃1:T )dς1:T

∝ p(y1:T |θ, σ̃1:T ) · p(θ|σ̃1:T ) ·
∫

p̃(ς1:T |σ̃1:T , θ, y1:T )dς1:T

= p(y1:T |σ̃1:T , θ) · p(θ|σ̃1:T ).

(ii) Drawing ς1:T from
p̃ (ς1:T |y1:T , σ̃1:T , θ) ∝ p̃(y1:T |ΣT , θ, ς1:T ) · π(ς1:T ).
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Affected Applications

• Primiceri (2005)’s TV-VAR with SV:

yt = ct + B1,tyt−1 + ...+ Bk,tyt−k + A−1
t Σtεt

where all the TV coefficients evolve as random walks, and all the
innovations in the model are jointly normally distributed with
covariance matrix equal to V . Define θ ≡

[
BT ,AT ,V

]

• Stock and Watson (2007)’s unobserved component model with SV:

yt = ct + σε,tεt

where
ct = ct−1 + σe,tet

Define θ ≡
[
cT
]
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• Del Negro and Otrok (2008)’s factor model with SV:

yi,t = ai,t + λi,t ft + ξi,t , t = 1, . . . ,T .

where

ft = Φ0,1ft−1 + . . .+ Φ0,qft−q + u0,t , u0,t ∼ iidN(0,Σ0,t),

and

ξi,t = φi,1ξi,t−1 + . . .+ φi,pi ξi,t−pi + ui,t , ui,t ∼ iidN(0, σ2
i,t).

Define θ ≡
[
AT ,ΛT , f T ,Φ

]

• DSGEs with SV (Justiniano, Primiceri (2008) and Cúrdia, Del
Negro, Greenwald (2014) )
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Applications of state space models Factor Models

Dynamic Factor Models

• A DFM decomposes the dynamics of n observables yi,t , i = 1, . . . , n,
into the sum of two unobservable components:

yi,t = ai + λi ft + ξi,t , t = 1, . . . ,T .

• Here ft is a κ× 1 vector of factors that are common to all
observables and ξi,t is an idiosyncratic process, that is specific to
each i .

• The factors follow a vector autoregressive processes of order q:

ft = Φ0,1ft−1 + . . .+ Φ0,qft−q + u0,t , u0,t ∼ iidN(0,Σ0),

• The idiosyncratic components follow autoregressive processes of
order pi :

ξi,t = φi,1ξi,t−1 + . . .+ φi,pi ξi,t−pi + ui,t , ui,t ∼ iidN(0, σ2
i ).
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Identification

• Without further restrictions the latent factors and the coefficient
matrices of the DFM are not identifiable.

• One can premultiply ft as well as u0,t by a κ× κ invertible matrix H
and post-multiply the vectors λi and the matrices Φ0,j by H−1,
without changing the distribution of the observables.

• We provide three examples of achieving identification.
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Example 1 – Geweke and Zhou (1996)

• Restrict Λ1,κ to be lower triangular:

Λ1,κ = Λtr
1,κ =




X 0 · · · 0 0
...

. . .
...

X X · · ·X X


 .

• Factors and hence matrices Φ0,j and Σ0 could still be transformed by
an arbitrary invertible lower triangular κ× κ matrix Htr without
changing the distribution of the observables.

• Under this transformation the factor innovations become Htru0,t .
• Choose Htr = Σ−1

0,tr such that the factor innovations reduce to a
vector of independent standard Normals.

• To implement this normalization, we simply let

Σ0 = Iκ.
• Sign normalization can be achieved with a set of restrictions of the

form:
λi,i ≥ 0, i = 1, . . . , κ.
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Example 2

• Λ1,κ is restricted to be lower triangular with ones on the diagonal
and Σ0 is a diagonal matrix with non-negative elements.

• The one-entries on the diagonal of Λ1,κ also take care of the sign
normalization.

• Since under the normalization λi,i = 1, i = 1, . . . , κ, factor fi,t is
forced to have a unit impact on yi,t
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Example 3

• Λ1,κ is restricted to be the identity matrix and Σ0 is an unrestricted
covariance matrix.

• The one-entries on the diagonal of Λ1,κ take care of the sign
normalization.
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Joint Distribution – Assume pi = p, q ≤ p + 1

Quasi-differenced Measurement Equation:

yi,t = ai + λi ft + φi,1(yi,t−1 − ai − λi ft−1) + . . .

+φi,p(yi,t−p − ai − λi ft−p) + ui,t , for t = p+1, ..,T .

Joint distribution:

p(y1:T , f0:T , {θi}ni=1, θ0)

=

[
T∏

t=p+1

(
n∏

i=1

p(yi,t |yi,t−p:t−1, ft−p:t , θi )

)
p(ft |ft−q:t−1, θ0)

]

×
(

n∏

i=1

p(yi,1:p|f0:p, θi )

)
p(f0:p|θ0)

(
n∏

i=1

p(θi )

)
p(θ0).

where θ0 determines the law of motion of the factors and θi summarizes
unit-specific coefficients.
Priors are conjugate.
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Gibbs Sampler: θi |·
The posterior density takes the form:

p(θi |f0:T , θ0, y1:T ) ∝ p(θi )

(
T∏

t=p+1

p(yi,t |yi,t−p:t−1, ft−p:t , θi )

)

p(yi,1:p|f0:p, θi ).

• Use Chib and Greenberg (1994)’s procedure to generate draws from
a regression with AR(p) errors (see Otrok and Whiteman, 1998 and
these notes -caveat emptor !- of mine)

• If prior for λi,i , i = 1, . . . , κ includes I{λi,i ≥ 0}, one can use an
acceptance sampler that discards all draws of θi for which λi,i < 0.

• If the prior is symmetric around zero, then one can resolve the sign
indeterminacy by post-processing the output of the (unrestricted)
Gibbs sampler: for each set of draws ({θi}ni=1, θ0, f0:T ) such that
λi,i < 0, flip the sign of the i ’th factor and the sign of the loadings
of all n observables on the ith factor.
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Gibbs Sampler: θ0|·
The posterior density takes the form:

p(θ0|f0:T , {θi}ni=1, y1:T ) ∝
(

T∏

t=p+1

p(ft |Ft−p,t−1, θ0)

)

p(θ0)p(f0:p|θ0)
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Gibbs Sampler: f0:T |·
• Write DFM in state-space form...

• Measurement equation (stack measurement eqs for all is):

(In −
p∑

j=1

Φ̃jL
j)yt = (In −

p∑

j=1

Φ̃j)a + Λ∗ f̃t + ut , t = p + 1, . . . ,T ,

where yt = [y1,t , .., yn,t ]
′, at = [a1, .., an]′, and ut = [u1,t , .., un,t ]

′,

Φ̃js are diagonal matrices with [φ1,j , .., φn,j ]
′ on the diagonal,

f̃t = [f ′t , .., f
′
t−p]′, and

Λ∗ =



λ1 −λ1φ1,1 . . . −λ1φ1,p

...
. . .

...
λn −λnφn,1 . . . −λnφn,p




• Note: ut is iid!
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• Factor law of motion in companion form (transition equation):

f̃t = Φ̃0 f̃t−1 + ũ0,t ,

where

Φ̃0 =




Φ0,1 Φ0,2 · · · Φ0,p 0k×k(p+1−q)

I 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · I 0




• Since the measurement equation starts from t = p + 1 as opposed
to t = 1, one needs to initialize the filtering step in the Carter-Kohn
algorithm with the conditional distribution of p(f0:p|y1:p, {θi}ni=1, θ0).
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Factor Model: Gibbs Sampler

For s = 1, . . . , nsim:

1 Draw θ
(s)
i conditional on (f

(s−1)
0:T , θ

(s−1)
0 , y1:T ). This can be done

independently for each i = 1, . . . , n.

2 Draw θ
(s)
0 conditional on (f

(s−1)
0:T , {θ(s)

i }ni=1, y1:T ).

3 Draw f
(s)

0:T , conditional on ({θ(s)
i }ni=1, θ

(s)
0 , y1:T ).

• Here are the codes for the Del Negro Otrok paper (“99 Luftballons:
Monetary policy and the house price boom across US states”, JME
2007)
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Factor Augmented VARs

• FAVARs allow for additional observables y0,t , e.g., the Fed Funds
rate, to enter the measurement equation, which becomes:

yi,t = ai + γiy0,t + λi ft + ξi,t , i = 1, . . . , n, t = 1, . . . ,T ,

where y0,t and γi are m × 1 and 1×m vectors, respectively.

• The observable vector y0,t and the unobservable factor ft are
assumed to jointly follow a vector autoregressive processes of order
q:

[
ft
y0,t

]
= Φ0,1

[
ft−1

y0,t−1

]
+ . . .+ Φ0,q

[
ft−q
y0,t−q

]
+ u0,t ,

u0,t ∼ iidN(0,Σ0) which is the reason for the term factor augmented
VAR.

• Identification:
u0,t = Σ0,trΩ0ε0,t .
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DSGEs

Linear DSGEs

• A simple DSGE model

• Parameters estimation

• Impulse responses and variance decomposition

• Inference on latent variables: Shock decomposition
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DSGEs A Simple DSGE Model

A Prototypical DSGE Model: Household

• Preferences:

IE t

[ ∞∑

s=0

βt+s

(
lnCt+s −

(Ht+s/Bt+s)1+1/ν

1 + 1/ν

)]

• Budget constraint:

Ct + It ≤WtHt + RtKt .

• Capital accumulation:

Kt+1 = (1− δ)Kt + It ,

• First-order conditions:

1

Ct
= βIE

[
1

Ct+1
(Rt+1 + (1− δ))

]
and

1

Ct
Wt =

1

Bt

(
Ht

Bt

)1/ν

.
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Firms

• Technology:
Yt = (AtHt)

αK 1−α
t .

• First-order conditions from profit maximization:

Wt = α
Yt

Ht
, Rt = (1− α)

Yt

Kt
.

• Market clearing:
Yt = Ct + It .
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Exogenous Processes

• Log Technology:

lnAt = lnA0 + (ln γ)t + ln Ãt , ln Ãt = ρa ln Ãt−1 + σaεa,t

where εa,t ∼ iidN(0, 1).

• Preference shifter:

lnBt = (1− ρb) lnB∗ + ρb lnBt−1 + σbεb,t

where εb,t ∼ iidN(0, 1).

• Initialzation:

ln Ã−τ = 0 and lnB−τ = 0.
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Model Solution

• The solution to the rational expectations difference equations
determines law of motion for Yt , Ct , It , Kt , Ht , Wt , and Rt .

• The technology process lnAt induces a common trend in output,
consumption, investment, capital, and wages.

• It is useful to detrended the model variables as follows:

Ỹt =
Yt

At
, C̃t =

Ct

At
, Ĩt =

It
At
, K̃t+1 =

Kt+1

At
, W̃t =

Wt

At
.
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DSGEs A Simple DSGE Model

Equilibrium Conditions, Rewritten

1

C̃t

= βIE

[
1

C̃t+1

e−at+1 (Rt+1 + (1− δ))

]
,

1

C̃t

W̃t =
1

Bt

(
Ht

Bt

)1/ν

W̃t = α
Ỹt

Ht
, Rt = (1− α)

Ỹt

K̃t

eat

Ỹt = Hα
t

(
K̃te
−at
)1−α

, Ỹt = C̃t + Ĩt , K̃t+1 = (1− δ)K̃te
−at + Ĩt .

• The process at is defined as

at = ln
At

At−1
= ln γ + (ρa − 1) ln Ãt−1 + σaεa,t .

• This log ratio is always stationary, because if ρa = 1 the ln Ãt−1

term drops out.
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DSGEs A Simple DSGE Model

Steady State, Etc.

• Steady state:

R∗ =
γ

β
− (1− δ),

K̃∗

Ỹ∗
=

(1− α)γ

R∗
,

Ĩ∗

Ỹ∗
=

(
1− 1− δ

γ

)
K̃∗

Ỹ∗
.

• If ρa = 1, the model generates cointegration relationships which are
obtained by taking pair-wise differences of lnYt , lnCt , ln It , lnKt+1,
and lnWt

• Parameters are stacked in vector θ:

θ = [α, β, γ, δ, ν, ρa, σa, ρb, σb]′.

Marco Del Negro DSGE and State Space Models Central Bank of Argentina 123 / 172



DSGEs A Simple DSGE Model

Loglinearization

Ĉt = IE t

[
Ĉt+1 + ât+1 −

R∗
R∗ + (1− δ)

R̂t+1

]

Ĥt = νŴt − νĈt + (1 + ν)B̂t , Ŵt = Ŷt − Ĥt ,

R̂t = Ŷt − K̂t + ât , K̂t+1 =
1− δ
γ

K̂t +
Ĩ∗

K̃∗
Ît −

1− δ
γ

ât ,

Ŷt = αĤt + (1− α)K̂t − (1− α)ât , Ŷt =
C̃∗

Ỹ∗
Ĉt +

Ĩ∗

Ỹ∗
Ît ,

Ât = ρaÂt−1 + σaεa,t , ât = Ât − Ât−1, B̂t = ρbB̂t−1 + σbεb,t .

Log-linearization of f (x):

1 write f (x) = f (ez);

2 conduct a first-order Taylor approximation around x0 in terms of z :

f (e ln x) ≈ f (x0) + x0f
(1)(x0)(ln x − ln x0).

What have we got? A state-space model!
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DSGEs A Simple DSGE Model

Model solution

• Need to solve for expectations!

• We can follow the method in Sims (2002) (Christopher A. Sims,
“Solving Linear Rational Expectations Models”. Computational
Economics, Vol. 20 (1-2), 1-20), implemented using the code
gensys (available in Matlab and R on Chris’ webpage).

• For any endogenous variable xt for which Et [xt+1] appears in the
equilibrium conditions (e.g., Et [π̂t+1]) define the variable
xEt = Et [xt+1] (e.g., π̂E

t+1 = Et [π̂t+1]) and note that

xt = Et−1[xt ] + ηx,t

= xE
t−1 + ηx,t

where rational expectations implies that:

Et [ηx,t+1] = 0
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DSGEs A Simple DSGE Model

• Write the system (equilibrium conditions, evolution exogenous
processes, expectational equations) as:

Γ0st = Γ1st−1 + Ψεt + Πηt

where:

1 st is a vector including all endogenous, exogenous variables +
expectational terms (e.g. st = {π̂t , .., πE

t , .., zt , ..})

2 εt includes all innovations to exogenous processes (e.g.
εt = {εz,t , εg ,t , ...})

3 ηt includes all expectational errors (e.g. ηt = {ηπ,t , ...}).
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DSGEs A Simple DSGE Model

•
Γ0(θ)st = Γ1(θ)st−1 + Ψ(θ)εt + Π(θ)ηt

⇓

gensys

⇓

st = T (θ)st−1 + R(θ)εt
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DSGEs A Simple DSGE Model

Measurement equation: Examples

• Observations on GDP and Hours:

[
lnGDPt

lnHt

]
=

[
lnY0

lnH∗

]
+

[
ln γ

0

]
t +

[
Ŷt + Ât

Ĥt

]
,

• Observations on GDP and Investment:

[
lnGDPt

ln It

]
=

[
lnY0

lnY0 + (ln Ĩ∗ − ln Ỹ∗)

]
+

[
ln γ
ln γ

]
t+

[
Ât + Ŷt

Ât + Ît

]
.
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DSGEs A Simple DSGE Model

Bayesian Estimation – Prior

Name Domain Density Para (1) Para (2)
α [0, 1) Beta 0.66 0.02
ν IR+ Gamma 2.00 1.00
4 ln γ IR Normal 0.00 0.10
ρa IR+ Beta 0.95 0.02
σa IR+ InvGamma 0.01 4.00
ρb IR+ Beta 0.80 0.10
σb IR+ InvGamma 0.01 4.00
lnH∗ IR Normal 0.00 10.0
lnY0 IR Normal 0.00 100
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DSGEs Parameters Estimation

Estimation: Random-Walk Metropolis Algorithm for DSGE
Model

1 Construct the proposal density:

1.a Use a numerical optimization routine to maximize the log
posterior: ln p(y1:T |θ) + ln p(θ). Call θ̃ the posterior mode.

1.b Compute numerically the inverse of the (negative) Hessian
computed at the posterior mode θ̃, call it Σ̃.

2 Draw θ(0) from N(θ̃, c2
0 Σ̃) or directly specify a starting value.

3 For j = 1, . . . , nsim: draw θ∗ from the proposal distribution
N(θ(j−1), c2Σ̃). The jump from θ(j−1) is accepted (θ(j) = θ∗) with
probability min {1, r(θ(j−1), θ∗|y1:T )} and rejected (θ(j) = θ(j−1))
otherwise, where

r(θ(j−1), θ∗|y1:T ) =
p(y1:T |θ∗)p(θ∗)

p(y1:T |θ(j−1))p(θ(j−1))

4 Burn-in period: throw away draws θ(j), for j = 1, .., nburn, where
nburn/nsim ≈ 10%.
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DSGEs Parameters Estimation

• Matlab estimation code for the FRBNY DSGE model
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DSGEs Parameters Estimation

Posterior (simple RBC example)

Det. Trend Stoch. Trend
Name Mean 90% Intv. Mean 90% Intv.
α 0.65 [0.62, 0.68] 0.65 [0.63, 0.69]
ν 0.42 [0.16, 0.67] 0.70 [0.22, 1.23]
4 ln γ .003 [.002, .004] .004 [.002, .005]
ρa 0.97 [0.95, 0.98] 1.00
σa .011 [.010, .012] .011 [.010, .012]
ρb 0.98 [0.96, 0.99] 0.98 [0.96, 0.99]
σb .008 [.007, .008] .007 [.006, .008]
lnH∗ -0.04 [-0.08, 0.01] -0.03 [-0.07, 0.02]
lnY0 8.77 [8.61, 8.93] 8.39 [7.93, 8.86]
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DSGEs Impulse responses and variance decomposition

Impulse response functions

• Want to compute
∂ (yt − D(θ))

∂εk1
(θ)

• Simply simulate the model!

1 Set εk1 = σk , εk,t = 0for t ≥ 2 and εj,t = 0, all t → Now we
have constructed a sequence of εt , t = 1, ..,T

2 Use

st = T (θ)st−1 + R(θ)εt , t = 1, ..,T

to get the states, and

yt − D(θ) = Z (θ)st + ut , t = 1, ..,T

to get the yt .

• Repeat for all draws θ(j), j = nburn + 1, .., nsim.
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DSGEs Impulse responses and variance decomposition
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DSGEs Impulse responses and variance decomposition

Variance Decomposition

• Want to compute the fraction of the variance of yt explained by
shock εk,t

• Overall (unconditional) variance of yt :

Var(yt) = Z (θ)P0|0Z (θ)′ + H(θ)

where P0|0 solves

P0|0 = T (θ)P0|0T (θ)′ + R(θ)Q(θ)R(θ)′

• Variance of yt attributed to shock k :

1 Construct Q̃k where all diagonal elements are set to 0 except
for the k th, which is equal to σk 2.

2 Compute the solution Pk
0|0 to

Pk
0|0 = T (θ)Pk

0|0T (θ)′ + R(θ)Q̃kR(θ)′

and compute

Var(yt)
k = Z (θ)Pk

0|0Z (θ)′

• Repeat for all draws θ(j), s = nburn + 1, .., nsim.
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DSGEs Impulse responses and variance decomposition
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DSGEs Inference on Latent Variables

Inference on latent states

• What is the time series of the output gap, or r∗? See Liberty St post
on “Why Are Interest Rates So Low?” or see this presentation.

• Call f (s0:T ) any function mapping the vector of latent states into
the object of interest, e.g. r∗1:T = {Zr f s1, ..,Zr f sT}, where Zr f selects
the state corresponding to the real interest rate in the flexible
price/wages economy. Then simply use the simulation smoother to
obtain

p(f (s0:T )|y1:T ) =

∫
f (s0:T )p(s0:T |θ, y1:T )p(θ|y1:T )d(θ, s0:T )
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http://libertystreeteconomics.newyorkfed.org/2015/05/why-are-interest-rates-so-low.html
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DSGEs Inference on Latent Variables

Shock decompositions

• What would history yt have been, had only shock i hit the economy,
and no other shock? See Liberty St post on “Developing a
Narrative: The Great Recession and Its Aftermath”

1 Use the simulation smoother to compute draws

ε
(j)
i,1:T , j = nburn + 1, .., nsim from p(εt |y1:T , θ), and s

(j)
0 from

p(s0|y1:T , θ).

2 Take the sequence of shock innovations for shock i , ε
(j)
i,1:T , and

generate a new sequence of innovations ε̃1:T (ε̃t is of the same

dimension as εt) by setting the i ’th element ε̃i,t = ε
(j)
i,t for

t = 1, . . . ,T
(and ε̃i,t ∼ N(0, σ2

i ) for t = T + 1, . . . ,T + H, if interested in shock
decomposition for forecasts).
All other elements of ε̃t , t = 1, . . . ,T + H, are set equal to zero.

• If you are only interested in the mean shock decomposition you can
use smoothed shocks εi,t|T for each draw of θ.
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DSGEs Inference on Latent Variables

3 Generate a counterfactual set of states s̃1:T from

s̃t = T (θ)s̃t−1 + R(θ)ε̃t , t = 1, ..,T + H

and a counterfactual history ỹ1:T from

ỹt = D(θ) + Z (θ)s̃t , t = 1, ..,T + H.
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DSGEs Inference on Latent Variables
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DSGEs DSGE Model-Based Forecasting

Forecasting with DSGEs

• How do we generate forecasts yT+1:T+H from a state-space model?
Same as any other state space model ...

p(yT+1:T+H |y1:T ) =
∫

(sT ,θ)

p(yT+1:T+H |sT , θ, y1:T ) p(sT |θ, y1:T )︸ ︷︷ ︸
posterior of sT |θ

p(θ|y1:T )︸ ︷︷ ︸
posterior of θ

d(sT , θ)

where

p(yT+1:T+H |sT , θ, y1:T ) =

∫

sT+1:T+H

p(yT+1:T+H |sT+1:T+H)

p(sT+1:T+H |sT , θ, y1:T )dsT+1:T+H
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DSGEs DSGE Model-Based Forecasting

In words...:

1 Use the Kalman filter to compute mean and variance of the

distribution p(sT |θ(j), y1:T ). Generate a draw s
(j)
T from this

distribution, where θ(j) is a draw from the posterior of θ.

2 Draw from sT+1:T+H |(sT , θ, y1:T ) by generating a sequence of

innovations ε
(j)
T+1:T+H , and iterating the state transition equation

forward starting from s
(j)
T :

s
(j)
t = T (θ(j))s

(j)
t−1 + R(θ(j))ε

(j)
t , t = T + 1, . . . ,T + H.

3 Use the measurement equation to obtain y
(j)
T+1:T+H :

y
(j)
t = D(θ(j)) + Z (θ(j))s

(j)
t , t = T + 1, . . . ,T + H. 2
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DSGEs DSGE Model-Based Forecasting

Why bother with forecasting with DSGE models?

• DSGE models have been trashed, bashed, and abused during the
Great Recession and after. One of the many reasons for the bashing
was their alleged inability to forecast.

• But DSGE models forecasts’ accuracy is comparable to, if not better
than, that of Blue Chip forecasters (and Greenbook)

• See Edge & Gürkaynak, BPEA 2010, and Del Negro & Schorfheide
(2013 “DSGE Model-Based Forecasting, ”Handbook of Economic
Forecasting II, also here)
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DSGEs DSGE Model-Based Forecasting

Poverty of the econometrician’s information set

• Quality of forecasts is constrained by quality of model, and the
observables used by the econometrician. The “usual” set of
observables (mostly NIPA based) falls short in two dimensions:

1 Timeliness: NIPA data are available with a lag. Professional
forecasters have current information that the DSGE
econometrician is not using.

2 Breadth: The “usual” set of observables may not convey
enough information about the state of the economy.

• Augment the set of observables: Use nowcasts from professional
forecasters, spreads, surveys ... → variables that may convey
information about the state of the economy not contained in
“usual” data set.
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DSGEs DSGE Model-Based Forecasting

Real time data sets

• Level the playing field: don’t give the DSGE econometrician
information that private forecasters do not possess at the time of the
forecasts (Croushore and Stark 2001, Edge and Gürkaynak 2010)

Quarter Greenbook End of Estimation Initial Forecast
Date Sample T Period T + 1

Q1 Jan 21 2003:Q3 (F) 2003:Q4
Mar 10 2003:Q4 (P) 2004:Q1

Q2 Apr 28 2003:Q4 (F) 2004:Q1
June 23 2004:Q1 (P) 2004:Q2

Q3 Aug 4 2004:Q2 (A) 2004:Q3
Sep 15 2004:Q2 (P) 2004:Q3

Q4 Nov 3 2004:Q3 (A) 2004:Q4
Dec 8 2004:Q3 (P) 2004:Q4
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DSGEs DSGE Model-Based Forecasting

Baseline DSGE Model: SW (2007)

• Measurement equation:

Output growth = LN((GDPC )/LNSINDEX ) ∗ 100
Consumption growth = LN((PCEC/GDPDEF )/LNSINDEX ) ∗ 100
Investment growth = LN((FPI/GDPDEF )/LNSINDEX ) ∗ 100
Real Wage growth = LN(PRS85006103/GDPDEF ) ∗ 100
Hours = LN((PRS85006023 ∗ CE16OV /100)/LNSINDEX )

∗100
Inflation = LN(GDPDEF/GDPDEF (−1)) ∗ 100
FFR = FEDERAL FUNDS RATE/4

Sample starts in 1964:Q1

• Same prior on θ as SW.
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DSGEs DSGE Model-Based Forecasting

SW vs Greenbook (March 1992-Sept 2004)
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DSGEs DSGE Model-Based Forecasting

SW vs Blue Chip (Jan 1992-Apr 2011)

Output Growth Inflation Interest Rates
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DSGEs DSGE Model-Based Forecasting

Incorporating 10-yrs inflation expectations from surveys

• SW forecasts inflation relatively well but ... somewhat tight prior on
π∗:∼ Gamma(.62, .10).

• No need of such a prior: Use a loose prior (π∗ ∼ Gamma(.75, .40))
and survey data as an observable:

πO,40
t = π∗ + IEDSGE

t

[
1

40

40∑

k=1

πt+k

]

• ... and change the model to be able to explain it:

Rt = ρRRt−1 + (1− ρR)
(
ψ1(πt − π∗t ) + ψ2(yt − y f

t )
)

+ψ3

(
(yt − y f

t )− (yt−1 − y f
t−1)

)
+ rmt ,

where π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t .

• Similar to Wright’s “democratic prior” – but survey not used to form
a prior.
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DSGEs DSGE Model-Based Forecasting

SW vs SW-Loose vs SWπ

Output Growth Inflation Interest Rates
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DSGEs DSGE Model-Based Forecasting

Timeliness of information: Incorporating nowcasts

• Factor model literature (for DSGEs, Boivin and Giannoni (2007))
addresses the issue by using the current indicators observed by
professional forecasters (confidence indexes, ISM, durable goods
orders, . . . ) as data.

• As a shortcut, we use those data as digested by professional
forecasters → incorporate Blue Chip consensus nowcasts as (possibly
noisy) observations on GDP, inflation, ...
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DSGEs DSGE Model-Based Forecasting

Incorporating nowcasts

Output Growth Inflation Interest Rates
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DSGEs Modeling Forward Guidance

Modeling Forward Guidance: Anticipated Policy Shocks

• We modify this rule to allow for forward guidance following Laseen
& Svensson 2009:

R̂t = ρR R̂t−1+(1−ρR)(ψπ

3∑

j=0

π̂t−j+ψy

3∑

j=0

(ŷt−j−ŷt−j−1+ẑt−j))

+εRt +
K∑

k=1

εRk,t−k

where εRk,t−k is a policy shock that is known to agents at time t − k,
but affects the policy rule k periods later, that is, at time t.

• Anticipated policy shocks are a simple way of capturing anticipated
deviations from the standard reaction function

• Note: Even in the model, not commitment to a path:
conditionality is still there!
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DSGEs Modeling Forward Guidance

Estimating Forward Guidance

• Add Expected FFR to the measurement equations:

FFRe
t,t+k = 400

(
IE t R̂t+k + lnR∗

)

= 400
(
ZR,.(θ)T (θ)kst + DR,.(θ)

)
, k = 1, ..,K

where FFRe
t,t+k is measured either using market expectations (e.g.,

OIS rates), or survey expectations (e.g., Blue Chip financial survey).
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DSGEs Modeling Forward Guidance

The Effect of Observing Expected Future Rates

• Introducing expected future rates in the measurement equation
provides information to the econometrician on the state of the
economy, which consists of both i) future policy shocks, ii) other
latent variables → does not necessarily produce more optimistic
forecasts

FRBNY DSGE Model: Research Directors Draft August 29, 2012

Figure 6: Effect of Incorporating FFR Expectations
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Solid and dashed red lines represent the mean for the forecast with and without incorporating FFR expectations, respectively.

Solid and dashed blue lines represent 90 percent probability intervals.
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Figure 6: Effect of Incorporating FFR Expectations
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Solid and dashed red lines represent the mean for the forecast with and without incorporating FFR expectations, respectively.

Solid and dashed blue lines represent 90 percent probability intervals.
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Figure 6: Effect of Incorporating FFR Expectations

Figure 6:

Unconditional Conditional
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Solid and dashed red lines represent the mean for the forecast with and without incorporating FFR expectations, respectively.

Solid and dashed blue lines represent 90 percent probability intervals.
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• Note: From the ex-post behavior of output and inflation the model
should be able to tell whether the change in expected FFR is due to
a policy shock or bad news
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DSGEs Modeling Forward Guidance

Historical Decomposition of Output and Inflation in the
FRBNY DSGE Model

FRBNY DSGE Model: Research Directors Draft June 2, 2014

Figure 4: Shock Decomposition
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The shock decomposition is presented for the conditional forecast. The solid lines (black for realized data, red for mean forecast)

show each variable in deviation from its steady state. The bars represent the shock contributions; specifically, the bars for each

shock represent the counterfactual values for the observables (in deviations from the mean) obtained by setting all other shocks

to zero.

FRBNY DSGE Group, Research and Statistics 15

Black: data (2007Q1-2014Q4); red: forecast.
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DSGEs Modeling Forward Guidance

Forecasting using interest rate expectations

Output Growth Inflation Interest Rates
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DSGEs Implementing a Forward Guidance Policy Experiment

Implementing a Forward Guidance Policy Experiment

• Suppose that at the end of period T (after time T shocks are
realized) the CB announces that, conditional on the state of the
economy today sT |T (common knowledge), it expects the future

path of interest-rates to be R̄T+1, . . . , R̄T+H̄ .

• For the agents, the announcement is a one-time surprise in period
T + 1, corresponding to an unanticipated monetary policy shock
εRT+1 and a sequence of anticipated shocks

{εR1,T+1, ε
R
2,T+1, . . . , ε

R
K ,T+1} where K = H̄ − 1.
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DSGEs Implementing a Forward Guidance Policy Experiment

• The solution to the following linear system of equations determines
the time T + 1 monetary policy shocks ε̄R = [ε̄RT+1, ε̄

R′

1:K ,T+1]′ as a

function of the desired interest rate sequence R̄T+1, . . . , R̄T+H̄

R̄T+1 = DR,. + ZR,.TsT |T + ZR,.R[ε̄RT+1, 0, . . . , 0, ε̄
R ′

1:K ,T+1]′

R̄T+2 = DR,. + ZR,.T
2sT |T + ZR,.TR[ε̄RT+1, 0, . . . , 0, ε̄

R ′

1:K ,T+1]′

...

R̄T+H̄ = DR,. + ZR,.T
H̄sT |T + ZR,.(T )H̄−1R[ε̄RT+1, 0, . . . , 0, ε̄

R ′

1:K ,T+1]′
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DSGEs Implementing a Forward Guidance Policy Experiment

• Iterate forward the state transition equation starting from sT |T
plugging in the policy shocks ε̄R in period T + 1

sT+1|T = T (θ(j))sT+1|T + R(θ(j))[εRt , 0, . . . , 0, ε
R ′

1:K ,t ]
′

and no shocks afterwards

st|T = T (θ(j))st−1|T , t = T + 2, . . . ,T + H,

(note, the transition equation will take care of putting the
anticipated shocks into the future policy rule)

• and plug the future states into the measurement equation to get the
impact on output, inflation ...

• See section 6.3 in Del Negro, Schorfheide (“DSGE Model
Forecasting”, Handbook of Forecasting)
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DSGEs Implementing a Forward Guidance Policy Experiment

... forecasts conditional on an FFR path

Interest Rates Output Growth Inflation
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DSGEs Forecasting the Great Recession

Forecasting the Great Recession

• In addition to the SW model, we now consider a model with financial
frictions along the lines of Bernanke, Gertler, Gilchrist (1999).

• Gross nominal return on capital:

R̃k
t = λrkt + (1− λ)qkt − qkt−1 + πt

• SW model: arbitrage condition between return on capital and return
on nominal bond:

Et [R̃
k
t+1] = Rt + bt ,

where R̃k
t is treated as latent and bt is a shock.

• SW-FF Model: arbitrage condition is

Et [R̃
k
t+1] = Rt + bt+ζsp,b

(
qkt + k̄t − nt

)
+ σ̃ω,t

where R̃k
t − Rt is treated as observed, σ̃ω,t is an additional shock,

and nt is an additional endogenous variable.
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DSGEs Forecasting the Great Recession

Forecasting the Crisis: Model Versions

• SWπ: Smets-Wouters model with time-varying inflation target
anchored by long-run inflation expectations. We do NOT use
external nowcasts here.

• SWπ-FF: Smets-Wouters model with time-varying inflation target
anchored by long-run inflation expectations and financial frictions.
Utilizes data on spreads until period T .

• SWπ-FF-Current: Smets-Wouters model with time-varying inflation
target anchored by long-run inflation expectations and financial
frictions. Also use FFR and spread from current quarter T + 1.

• Spreads: based on Baa bonds versus 10-year treasury rate.
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DSGEs Forecasting the Great Recession

Forecasting the Great Recession: Oct 10, 2007 (2007Q2
data)

SWπ SWπ-FF SWπ+Current FFR,Spr
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DSGEs Forecasting the Great Recession

July 10, 2008 (2008Q1 data)

SWπ SWπ-FF SWπ+Current FFR,Spr
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DSGEs Forecasting the Great Recession

Jan 10, 2009 (2008Q3 data)

SWπ SWπ-FF SWπ+Current FFR,Spr
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DSGEs Forecasting the Great Recession

Forecasting the Great Recession: Inflation

SWπ SWπ-FF SWπ+Current FFR,Spr
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See Del Negro, Giannoni, Schorfheide, Inflation in the Great Recession
and New Keynesian Models, AEJ Macro 2015
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DSGEs PITs

Evaluation

• Question: are predictive densities are well calibrated?

• Roughly: in a sequential forecasting setting events that are predicted
to have 20% probability, should roughly occur 20% of the time.

• Probability Integral Transforms:

• If Y is cdf F (y), then

P{F (Y ) ≤ z} = P{Y ≤ F−1(z)} = F
(
F−1(z)

)
= z

• PITs

zi,t,h =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:T )dỹi,t+h.

References for PITs: Rosenblatt (1952), Dawid (1984), Kling and Bessler (1989),

Diebold, Gunther, and Tay (1998), Diebold, Hahn, and Tay (1999), . . ., Geweke and

Amisano (2010), Herbst and Schorfheide (2011).
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PITs
2 Quarters-Ahead

Output Growth Inflation Interest Rates
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DSGEs Model comparison

Model Comparison

• Question: Does model M1 fit better than model M2?

• In a Bayesian framework, model comparison is conducted using
Posterior Odds:

p(M1|y1:T )

p(M2|y1:T )︸ ︷︷ ︸
Posterior Odds

=
p(y1:T |M1)

p(y1:T |M2)︸ ︷︷ ︸
Bayes Factor

p(M1)

p(M2)︸ ︷︷ ︸
Prior Odds

• Bayes Factor – the ratio of marginal likelihoods – summarizes the
sample information as to which model achieves the best fit.
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DSGEs Model comparison

Priors and Bayesian Model Comparisons

• The marginal likelihood (or marginal data density) is the
likelihood of observing the data under model Mi , and is computed
as the integral of the likelihood with respect to the prior:

p(y1:T |Mi ) =

∫
p(y1:T | θ,Mi )︸ ︷︷ ︸

Likelihood

p(θ,Mi )︸ ︷︷ ︸
Prior

dθ

ρ

Likelihood

Prior 1

Prior 2

• Lindley’s paradox: flat (or almost flat) priors can kill any model, no
matter how well it fits the data.
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Computing the marginal likelihood

• Geweke’s modified harmonic mean estimator

• Harmonic mean estimators are based on the following identity

1

p(y1:T )
=

∫
f (θ)

p(y1:T |θ)p(θ)
p(θ|y1:T )dθ,

where

∫
f (θ)dθ = 1.

• Conditional on the choice of f (θ) an obvious estimator is

p̂G (y1:T ) =


 1

nsim

nsim∑

j=1

f (θ(j))

p(y1:T |θ(j))p(θ(j))



−1

where θ(j) is drawn from the posterior p(θ|y1:T ).

• Geweke (1999):

f (θ) = τ−1(2π)−d/2|Vθ|−1/2 exp
[
−0.5(θ − θ̄)′V−1

θ (θ − θ̄)
]

×
{

(θ − θ̄)′V−1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}
.
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