
Temperature and Growth:

A Panel Analysis of the United States

Riccardo Colacito    
Bridget Hoffmann       
Toan Phan   

IDB WORKING PAPER SERIES Nº IDB-WP-676

May 2016

Department of Research and Chief Economist
Inter-American Development Bank



May 2016

Temperature and Growth:

A Panel Analysis of the United States

Riccardo Colacito* 
Bridget Hoffmann** 
Toan Phan*

* University of North Carolina at Chapel Hill 
** Inter-American Development Bank 



Cataloging-in-Publication data provided by the 
Inter-American Development Bank 
Felipe Herrera Library 
 
Colacito, Riccardo. 
     Temperature and growth: a panel analysis of the United States / Riccardo Colacito, 
Bridget Hoffmann, Toan Phan. 
     p. cm. — (IDB Working Paper Series ; 676) 
     Includes bibliographic references. 
     1. Climatic changes-Economic aspects-United States. 2. Economic development-
Environmental aspects-United States. 3. United States-Economic conditions. I. 
Hoffmann, Bridget. II. Phan, Toan. III. Inter-American Development Bank. Department 
of Research and Chief Economist. IV. Title. V. Series. 
IDB-WP-676  

Copyright ©              Inter-American Development Bank. This work is licensed under a Creative Commons IGO 3.0 Attribution-
NonCommercial-NoDerivatives (CC-IGO BY-NC-ND 3.0 IGO) license  (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/
legalcode) and may be reproduced with attribution to the IDB and for any non-commercial purpose, as provided below. No 
derivative work is allowed. 

 Any dispute related to the use of the works of the IDB that cannot be settled amicably shall be submitted to arbitration pursuant to 
the UNCITRAL rules. The use of the IDB's name for any purpose other than for attribution, and the use of IDB's logo shall be 
subject to a separate written license agreement between the IDB and the user and is not authorized as part of this CC-IGO license. 

 Following a peer review process, and with previous written consent by the Inter-American Development Bank (IDB), a revised 
version of this work may also be reproduced in any academic journal, including those indexed by the American Economic 
Association's EconLit, provided that the IDB is credited and that the author(s) receive no income from the publication. Therefore, 
the restriction to receive income from such publication shall only extend to the publication's author(s). With regard to such 
restriction, in case of any inconsistency between the Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives license 
and these statements, the latter shall prevail. 

Note that link provided above includes additional terms and conditions of the license. 

The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the Inter-American 
Development Bank, its Board of Directors, or the countries they represent. 

 

http://www.iadb.org

2016



Abstract* 
 
This paper documents that seasonal temperatures have significant and systematic 
effects on the U.S. economy, both at the aggregate level and across a wide cross-
section of economic sectors. This effect is particularly strong for the summer: an 
increase of 1o F in the average summer temperature is associated with a reduction 
in the annual growth rate of state-level output of 0:15 to 0:25 percentage points. 
When these estimates are combined with projected increases in seasonal 
temperatures it is found that a reduction of U.S. economic growth by up to one 
third could occur over the next century.  
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1 Introduction

We analyze the effect of average seasonal temperatures on the growth rate of U.S. out-

put. We find that seasonal temperatures, particularly summer temperatures, have sig-

nificant and systematic effects on the U.S. economy, both at the aggregate level and

across a wide cross-section of economic sectors. A 1oF increase in the average summer

temperature is associated with a reduction in the annual growth rate of state-level out-

put of 0.15 to 0.25 percentage points.

As global average temperatures are predicted to continue rising over this century, many

scholars and policymakers have raised warnings of the potential for dramatic damages

to the global economy (e.g., Stern (2007), Field et al. (2014)). The economics litera-

ture has documented substantial negative effects of global warming on economic growth

in developing economies (e.g., Gallup, Sachs and Mellinger (1999), Nordhaus (2006),

Burke et al. (2009), Hsiang (2010), Dell, Jones and Olken (2012)). For the U.S., how-

ever, it has been challenging to provide systematic evidence that rising temperatures

affect the growth rate of economic activities beyond sectors that are naturally exposed

to outdoor weather conditions (see Mendelsohn and Neumann (1999), Schlenker and

Roberts (2006; 2009), and Burke and Emerick (2015) for an analysis of an agricultural

industry). We contribute to this literature by providing comprehensive evidence that ris-

ing temperatures do affect U.S. economic activities, at both the aggregate and industry

levels.

We overcome existing challenges by exploiting random fluctuations in seasonal temper-

atures across years and states. Using a panel regression framework with the growth

rate of gross state product (henceforth GSP) and average seasonal temperatures of each

U.S. state, we find that summer and fall temperatures have opposite effects on economic

growth. An increase in the average summer temperature negatively affects the growth

rate of GSP, while an increase in the fall temperature positively affects this growth rate,
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although to a lesser extent. The different signs of the two effects suggest that previous

studies’ aggregation of temperature data into annual temperature averages (e.g., Dell

et al. (2012)) may mask the heterogeneous effects of different seasons.

The summer effect dominates the fall effect in our recent sample (post-1990), leading to

a negative net economic effect of rising temperatures. This implies that the U.S. econ-

omy is still sensitive to temperature increases, despite the progressive adoption of adap-

tive technologies such as air conditioning (Barreca et al. (2015)). We also document that

the temperature effects are particularly strong in states with relatively higher summer

temperatures, most of which are located in the South.

We revisit the conjecture that only a small fraction of the sectors of the economy are

sensitive to rising temperatures in developed economies, implying that the aggregate

economic impact of warming on the U.S. will be limited (Schelling (1992), Mendelsohn

(2010), Nordhaus (2014)). Our results show that rising summer temperatures have a

pervasive effect in the entire cross-section of industries, above and beyond the sectors

that are traditionally deemed as vulnerable to changing climatic conditions. Specif-

ically, we document that an increase in the average summer temperature negatively

affects the growth rate of output of many industries, including food services, insurance

carriers, retail, wholesale, and real estate, which in total account for more than a third

of national gross domestic product (GDP). These effects are particularly strong for the

most recent part of our sample. Only a limited number of sectors, such as utilities (1.8%

of national GDP), which includes providers of energy, benefit from an increase in the

average summer temperature.

We document that temperature may affect economic activities through its impact on

labor productivity. In our empirical analysis, an increase in the average summer tem-

perature decreases the annual growth rate of labor productivity, while an increase in the

average fall temperature has the opposite effect. While our finding sheds light on the

effects of temperature on labor productivity at the macroeconomic level, it is also consis-
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tent with existing studies of this relationship at the microeconomic level. For example,

Zivin and Neidell (2014) have found that warmer temperatures reduce labor supply in

the U.S., and Cachon, Gallino and Olivares (2012) and Zivin, Hsiang and Neidell (2015)

have documented that high temperatures decrease productivity and performance.

Our paper also contributes to the growing debate on the long-term economic conse-

quences of rising global temperatures (e.g., Mendelsohn and Neumann (1999) and Tol

(2010)). We combine our estimates of the effects of seasonal temperatures on the growth

rate of U.S. output with several projections of the expected U.S. temperature change

over the next century. We conduct our analysis under a “business as usual” benchmark,

in which there is no additional mitigation and the estimated effects of temperature on

economic growth remain unchanged over the long-horizon. We document that the pro-

jected increases in summer and fall temperatures could reduce the growth rate of annual

nominal GDP by up to 1.5 percentage points, which is more than a third of the historical

average nominal growth rate of about 4% per year.

Our analysis highlights the complex ways in which temperatures affect economic activ-

ities, and it reveals the need to disaggregate the data into seasons and industries to

uncover the full extent of this impact. By providing specific estimates on the effect of

temperature on economic activities in the U.S., our empirical analysis informs a grow-

ing body of literature focused on general equilibrium models of climate change, including

integrated assessment models. These models constitute the basis of many policy recom-

mendations regarding the regulation of greenhouse gas emissions (e.g., Golosov et al.

(2014), Acemoglu et al. (2012), Bansal and Ochoa (2011), and Bansal, Ochoa and Kiku

(2014)). All of these models critically rely on empirical estimates of the impacts of rising

temperatures on aggregate economic activities. In the absence of specific estimates for

the U.S., the parameters of these “climate damage functions” are generally calibrated to

match cross-country estimates (e.g., Nordhaus and Sztorc (2013)). In this respect, our

analysis helps bridge the gap between the theoretical and empirical literatures and will
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enable researchers to sharpen the policy recommendations based on this class of models,

especially for the U.S.

Our paper is related to the analysis of Deryugina and Hsiang (2014), who also ex-

ploit within-country variations in the U.S. to find that daily temperatures above certain

thresholds reduce county income levels. Our analysis differs from theirs along several

dimensions. First, while Deryugina and Hsiang (2014) focus on high-frequency (daily)

temperature fluctuations, we focus on a lower frequency (quarterly). This allows us

to combine our estimates with existing climatological projections, which are typically

only available at lower frequencies. Additionally, we provide a comprehensive industry

analysis that documents the widespread and heterogeneous impacts of rising summer

temperatures on the cross-section of industries.

In addition, following the extremely cold winters of 2013–2014, the impact of weather-

related variables on economic activity has captured the attention of the Federal Reserve

Bank (see, for example, Yellen (2014)). Bloesch and Gourio (2015) analyze the impact

of temperature and snowfall during the coldest months of the year (November through

March) on the growth rate of quarterly economic activities. They find that snowfall

has a negative effect on some routinely employed economic indicators such as nonfarm

payroll, housing permits, and housing starts. Our analysis is broadly consistent with

their results, which suggests that a drop in temperatures in cold weather seems to have

a negative impact on economic activities. While they focus on the quarter-to-quarter

effect of temperature on economic activity to measure a potential bounce-back effect

following adverse winter weather conditions, we assess the cumulative effect on the

annual growth rate of output and emphasize the effect of summer temperatures.

The rest of the paper is organized as follows. Section 2 provides a description of the

main datasets that we employ in our analysis. Section 3 describes our main results and

documents the stability of the estimated effects over time. Section 4 documents several

economic mechanisms driving the main results, including the effect of temperature on
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labor productivity, on the growth rate of output in the cross-section of industries, and

in the cross-section of U.S. regions. Section 5 provides evidence that seasonal tempera-

tures affect the growth rate and not just the level of GSP, and it analyzes the long-term

consequences of global warming for the aggregate U.S. economy, in addition to providing

robustness checks of our main results. Section 6 concludes.

2 Data

This section describes our data sources and the procedures we use to aggregate weather-

related data. We refer the reader to the appendix for additional details.

2.1 Weather data

We use daily station-level weather data from the National Oceanic and Atmospheric

Administration (NOAA) Northeast Regional Climate Center. This dataset contains daily

observations on average temperature, precipitation, and snowfall across U.S. weather

stations. Throughout the paper, the unit of temperature is degrees Fahrenheit. The

longest common sample across all weather stations starts in 1869 and ends in 2012.

In this study, we focus on the 1957–2012 sample, which coincides with the period for

which we have data on GSP (see below). For each weather station, we deseasonalize

the raw data by regressing daily observations on 12 dummies representing the months

of the year and subtract the corresponding estimated monthly component from each

observation (see appendix A.2.1 for details on deseasonalization).

We aggregate daily weather observations to quarterly averages by taking the average

of the daily observations in each season. Specifically, we define the winter as January

through March, the spring as April through June, the summer as July through Septem-

5



ber, and the fall as October through December. Our definition of seasons coincides with

the definition of quarters commonly encountered in the macroeconomics literature, and

thus will allow our analysis to contribute to future developments of macroeconomic mod-

els that include climate-related variables. We consider alternative definitions of seasons

in the robustness checks in section 5.3.

We analyze average seasonal temperatures in order to establish a connection between

long-term temperature changes and economic activities. This connection can be more ac-

curately assessed using a lower-frequency temperature measure. To aggregate weather

data from the station level to the county and state level, we employ ArcGIS, a geographic

information system, to obtain the coordinates for the centroid of each of the 3,144 coun-

ties and county equivalents, as well as each weather station. The country, state, and

county borders used in ArcGIS are from 2013 topographically integrated geographic en-

coding and referencing (TIGER) shape files. These shape files, along with the area and

population of each county are obtained from the U.S. Census Bureau. We then follow a

standard aggregation method (e.g., Deschênes and Greenstone (2012)). For each county

we weight the daily temperature, precipitation, and snowfall of each weather station

in a 500 km radius of the county’s centroid by the inverse of the straight-line distance

between the station and the county centroid. In this way, the closest weather stations

are assigned a larger weight in determining each county’s weather.

Finally, to aggregate to the state level, we weight the weather observations of each

county in a state in proportion to either the corresponding county’s area or population.

Weighting by area assigns larger weights to larger counties, while weighting by popu-

lation assigns larger weights to more densely populated areas. We use area weights in

the main analysis in the text, but our results are very similar across different weighting

schemes (see section 5.3). We aggregate state-level weather data to the country level by

following the same procedure.

In section 5.3, we document that our results are robust to using non-deseasonalized
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gridded temperature data. We use the NOAA U.S. Climate Divisions’ nClimDiv dataset,

which provides absolute monthly temperature averages for each state, derived from

area-weighted averages of 5km × 5km grid-point temperature estimates interpolated

from station data.1

2.2 State-level economic data

We use data on nominal GSP between 1957 and 2012 for all 50 states and the District

of Columbia. GSP is defined as the value added in production by the labor and capital

of all industries located in that state. Data for 1957–1962 come from the U.S. Census

Bureau Bicentennial Edition, and data for the 1963–2012 sample come from the U.S.

Department of Commerce’s Bureau of Economic Analysis (BEA). The data frequency

is annual. From the BEA, we also collected data for national GDP, nominal GSP per

capita, real GSP, and industry output data for the 1963–2011 sample. Industry data

for 1963–1997 are categorized using the Standard Industrial Classification (SIC) codes,

while data for 1997–2011 follow the North American Industry Classification System

(NAICS). Finally, annual employment data at the state level (measured in thousands of

employees) are collected from the Bureau of Labor and Statistics for the sample 1990–

2012.

3 Main results

In this section we report our main empirical results. First, as a benchmark, we show

that the relationship between temperatures and growth is not statistically significant in

time-series regressions at the whole-country level, consistent with findings in the exist-
1See ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/climdiv-inv-readme.txt for

more details.
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Table 1: Main Results
Effects of annual and seasonal temperatures on GSP growth

Whole Year Winter Spring Summer Fall
Time Series −0.396 −0.071 −0.027 −0.414 0.042

(0.382) (0.179) (0.334) (0.385) (0.287)

Panel Analysis 0.006 0.001 0.003 −0.154 0.102
(0.111) (0.049) (0.065) (0.072)∗∗ (0.055)∗

(0.069) (0.025) (0.032) (0.047)∗∗∗ (0.040)∗∗

Notes: The first column reports the estimated coefficients on average annual temperature from
a regression of the economic growth rate on its lag and the average annual temperature (regres-
sions (1) and (3)). The four columns on the right report the estimated coefficients for each of
the four seasonal temperature averages (regressions (2) and (4)). The top panel (“Time Series”)
reports the estimated coefficients using GDP and weather data aggregated to the national level
(regressions (1) and (2)). The bottom panel (“Panel Analysis”) reports estimated coefficients us-
ing state-level GSP and weather data (regressions (3) and (4)). In the panel regressions, all 50
states and the District of Columbia are included and each state is weighted by the proportion,
averaged over the whole sample, of its GSP relative to the national GDP. All specifications in-
clude the lagged dependent variable, and the panel specifications include state and year fixed
effects. Temperatures are in degrees Fahrenheit. The sample is 1957–2012. Standard errors are
in parentheses. In the bottom panel, the first standard error beneath each estimated parameter
is clustered by year, while the second is clustered by state. ***, **, and * denote significance at
the 1%, 5%, and 10% levels.

ing literature. Then, we improve the analysis by using panel regressions with weather

and economic data from all 50 states plus the District of Columbia (henceforth “the

cross-section of states”). Our main findings are as follows: (1) an increase in the average

summer temperature negatively affects the growth rate of GSP, and (2) an increase in

the average fall temperature positively affects growth, although to a lesser extent. Both

effects are statistically and economically significant. In section 5.3, we perform a com-

prehensive set of robustness checks and show that the summer effect is generally very

robust, while the fall effect is less so.
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3.1 Benchmark: Time-series regressions with country-level data

We consider two time-series regressions. The first is a regression of the aggregate

growth rate of national GDP on the average annual temperature:

∆yt = βTt + ρ∆yt−1 + εt, (1)

where ∆yt denotes the growth rate of national GDP between years t−1 and t; Tt denotes

the annual average temperature in year t in degrees Fahreneit; and the lagged growth

rate ∆yt−1 controls for autocorrelation.

The second is a regression of the growth rate of aggregate GDP on the average temper-

atures of the four seasons:

∆yt =
∑
s∈S

βsTs,t + ρ∆yt−1 + εt, (2)

where Ts,t denotes the average temperature in season s ∈ S = {winter, spring, summer, fall}

in year t.

The first row of table 1 reports the results of these regressions. The column “Whole

Year” reports the estimate for the coefficient β in equation (1). The remaining columns

report the estimations for coefficients βs in equation (2). As the table shows, none of the

estimated coefficients are statistically significant. These results confirm the difficulty of

identifying the effect of temperature on economic growth in the U.S. documented in the

extant literature.

3.2 Panel regressions with state-level data

We explore the impact of temperature on the growth rates of GSP in the cross-section of

states using two panel specifications that mirror our time-series analysis. The first is a
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regression of the growth rate of GSP on the state-level annual average temperature:

∆yi,t = βTi,t + ρ∆yi,t−1 + αi+αt+εi,t, (3)

where ∆yi,t and Ti,t denote GSP growth and the annual average temperature in state i in

year t, respectively, while αi and αt denote state and year fixed effects. We again include

the lagged GSP growth rate as a control to capture the degree of autocorrelation of the

dependent variable.

In the second specification, which is the main specification of the paper, we disaggregate

the annual average temperature into four average seasonal temperatures:

∆yi,t =
∑
s∈S

βsTi,s,t + ρ∆yi,t−1+αi+αt+εi,t, (4)

where the variables are defined as above and Ti,s,t denotes the temperature in degrees

Fahrenheit in state i, year t, and season s.

Since some states have larger GSPs and thus contribute more to national GDP than

others, in both panel specifications we weight each state by the proportion of its GSP

relative to the entire country’s GDP over the whole sample (see appendix A.2.2 for de-

tails). In section 5.3 we conduct robustness checks with alternative weighting schemes.

We report the results of these panel regressions in table 1. The column “Whole Year”

refers to the specification in equation (3). We report the estimated coefficient for β and

standard errors, clustered first by years and then by state. The results indicate that the

effect of average temperature at the annual level is again not statistically significant,

confirming the findings in the time-series specifications.

However, when we break down annual temperatures into the four seasonal tempera-

tures, the results change substantially. The rightmost four columns of table 1 report the

estimates for the βss seasonal coefficients with associated standard errors, clustered by
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year and by state. The table shows the relationship between average summer and fall

temperatures and economic growth rates. These effects are both statistically and eco-

nomically significant: a 1oF increase in the average summer temperature is associated

with a reduction in the annual GSP growth rate by 0.154 percentage points, while a 1oF

increase in the average fall temperature is associated with an increase in the annual

GSP growth rate by 0.102 percentage points.

The opposite direction of the impact of summer and fall temperatures on GSP growth

rates may partially explain the difficulty of obtaining statistically significant estimates

using annual temperatures. Even though the magnitudes of the summer and fall effects

are comparable, we document through robustness checks (section 5.3) and the exercise

below that the summer effect is much more robust than the fall effect.

3.3 Stability of the effects through time

We explore how the estimated coefficients in panel regression (4) evolve through time.

This exploration is relevant because it could be the case that the negative economic ef-

fects of summer temperatures are diminished in the more recent part of the sample due

to adaptation (for example, due to widespread adoption of air conditioning technologies

as documented by Barreca et al. (2015)).

We re-run the regression specified in equation (4) but delay the beginning of the sample

by one year at a time. We repeat this exercise until the sample starts in 1990; past this

year, the sample size becomes very small, thus compromising the statistical significance

of our estimation. The results, reported in figure 1 show that the summer coefficient

remains negative and statistically significant at the 10% level as the sample shrinks;

the point-estimate for the summer effect is −0.154 in the full sample and −0.254 in the

post-1990 sample. However, the fall coefficient is no longer statistically significant in

the post-1990 sample; the point-estimate for the fall effect is 0.102 in the full sample
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Figure 1: Stability across time of the effect of average seasonal temperatures on GSP growth.
Each panel reports the estimated coefficients of average temperature for the corresponding sea-
son. Dots correspond to the coefficients estimated over the sample starting with the year re-
ported on the horizontal axis and ending in 2012. The panel regressions are for the entire cross-
section of the U.S. Each state is weighted by its relative GSP. Regressions include state and year
fixed effects. The grey areas represent 90% confidence intervals. Standard errors are clustered
at the year level. The solid lines are linear fits of the dots in each panel.

and 0.031 (and indistinguishable from zero) in the post-1990 sample. This finding is

consistent with the results of our robustness checks (section 5.3): the summer effect is

very robust, but the fall effect is not.
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4 Economic mechanisms

In this section, we explore potential mechanisms through which temperatures affect

the growth rate of GSP. First, we show that summer and fall temperatures affect the

growth of labor productivity. Second, we disaggregate GSP into industry groups and

show that, in the post-1997 sample, an increase in the average summer temperature

negatively affects output growth in various industry groups (including food services and

drinking places; insurance; wholesale; retail; and agriculture, forestry, and fishing) and

positively affects growth in the utilities and mining sectors. Third, we show that the

effect of temperature on GSP is particularly strong in Southern states.

4.1 Effect on labor productivity

We study the possibility that temperature affects economic growth through labor pro-

ductivity. Following Bernard and Jones (1996), we define labor productivity for each

state as the ratio between total private industry output and employment. The decision

to restrict our focus to private industries is dictated by the fact that the Bureau of Labor

Statistics reports data on state-level employment only for private industries. We verify

in our robustness checks (see section 5.3) that the main results reported in table 1 are

still valid for this specific subset of industries. Similarly, our choice to analyze labor

productivity as opposed to total factor productivity is based on data availability.2

In the top panel of table 2 we report the results of our analysis of the growth rate of

annual labor productivity. Specifically, we estimate the coefficients of the following spec-

ification:

∆ai,t =
∑
s∈S

βsTi,s,t + ρ∆ai,t−1+αi+αt+εi,t, (5)

2Garofalo and Yamarik (2002) built a dataset for state-level real capital stock. However, the sample
over which real GSP and real capital stock are deflated using the same method is limited, thus impairing
the construction of a panel of total factor productivity series.
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where ∆ai,t denotes the growth rate of productivity in state i at year t, and all other

variables are defined as in the previous sections. Specification (5) corresponds to our

baseline specification in (4) but replaces the growth rate of GSP with the growth rate

of productivity. The last two columns of table 2 document that summer and fall tem-

peratures again have significant effects on the growth rate of labor productivity. These

results confirm our findings in table 1 and also provide a possible pathway through

which seasonal temperatures may affect economic growth. Specifically, an increase in

the average summer temperature negatively affects productivity growth, which in turn

results in a reduction in output. A drop in the average fall temperature seems to be

detrimental for productivity, thus resulting in a lower growth rate of GSP.

The bottom panel of table 2 reports the results of our analysis of the growth rate of

employment for private industries. The estimates in this panel correspond to the spec-

ification in equation (4), except that the dependent variable is the growth rate of em-

ployment rather than the growth rate of GSP. The results indicate that the association

between average summer and fall temperatures and the growth rate of employment is

not statistically significant. Taken together, the results in the top and bottom panels of

table 2 suggest that a main mechanism through which summer and fall temperatures

affect GSP growth is productivity growth, rather than employment growth.

Our results are in line with other findings in the literature. For example, Cachon et al.

(2012) document that heat and snow significantly affect output and productivity in au-

tomobile plants. The occurrence of six or more days with temperatures above 90 degrees

Farenheit reduces the weekly production of U.S. automobile manufacturing plants by an

average of 8 percent. Given that automobile manufacturing largely takes place indoors,

the authors argue that this finding suggests there are limitations of air conditioning;

it is possible that there are important areas in the production process, such as loading

and unloading areas, that are difficult to cool or warm. Bloesch and Gourio (2015) also

document that cold weather negatively affects production in various industries. We will
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Table 2: Effects of temperatures on productivity growth and employment growth

Winter Spring Summer Fall
Productivity −0.033 −0.020 −0.152 0.132

(0.067) (0.065) (0.087)∗ (0.048)∗∗∗

(0.042) (0.031) (0.050)∗∗∗ (0.054)∗∗

Employment 0.013 −0.086 0.008 −0.021
(0.032) (0.051)∗ (0.059) (0.042)
(0.015) (0.051)∗ (0.037) (0.019)

Notes: This table reports results for panel regressions of state productivity growth rate on tem-
peratures, using the entire cross-section of 50 states and the District of Columbia. Productivity
is defined as output over employment in the private sector. All specifications include the lagged
dependent variable, state and year fixed effects. States are weighted in the panel regression
by the proportion, averaged over the whole sample, of their GSP relative to that of the whole
country. The columns refer to the analysis conducted by regressing jointly on the four seasonal
averages. Winter is defined as Jan.–Mar., spring as Apr.–Jun., summer as Jul.–Sep., fall as Oct.–
Dec. Temperatures are in degrees Fahrenheit. The sample is 1990–2011. Two standard errors,
the first clustered by year and the second clustered by state, are reported in parentheses. ***,
**, and * denote significance at the 1%, 5%, and 10% levels.

return to this discussion in the industry analysis below.

Several other studies also document effects of temperature on productivity and perfor-

mance. In a survey of workplace and laboratory studies with objective measures of per-

formance, Seppänen et al. (2006) document that performance at office tasks decreases at

high temperatures. Similarly, Adhvaryu et al. (2014) find that productivity in garment

factories in Bangalore, India, decreases at high temperatures. Using repeated cognitive

assessments from the National Survey of Youth, Zivin et al. (2015) study the effect of

short-run weather shocks on cognitive performance and find that an increase in outdoor

temperature decreases math performance.

4.2 Industry analysis

We further explore the composition of the effects documented in the panel regression

in table 1 by breaking down the total GSP of each state into 12 large industry groups.

These groups are listed in descending order of national GDP share in the first column of
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table 3 (for a detailed list of industries in each group, see appendix table A2). The last

column of table 3 provides the post-1997 average share of national GDP for each group.

These groups are nonoverlapping and together account for 100% of gross product.

One caveat of this exercise is a data limitation due to the change in the classification

of industries, from the Standard Industrial Classification system (SIC) to the North

American Industry Classification System (NAICS), that took place in 1997. In sev-

eral instances this substantially affects the composition of specific industries (see the

breakdowns of the “Services” and “Communication/Information” categories in appendix

table A2). In order to prevent our results from picking up effects that may be due to

these changes, we report the results of our analysis over two separate subsamples (pre-

and post-1997). This split significantly reduces the sample size and, hence, the power

of our statistical analysis. For this reason, we estimate only the effect of summer tem-

perature—the season whose effects on economic growth is strongest in our analysis.

Specifically, for each group of industries j, we estimate the following equation:

∆yji,t = βjsummerTi,summer,t + ρ∆yji,t−1+αi+αt+εi,t, (6)

where ∆yji,t denotes the output growth of industry group j in state i at year t.

Our results for the estimate of βjsummer for each industry group are reported in table 3.

The columns labeled “Pre-1997” and “Post-1997” correspond to the estimates for the

1963-1997 and 1997-2011 samples, respectively. As before, for each coefficient estimate,

we report two standard errors, the first clustered by year and the second clustered by

state.

Several important findings emerge from table 3. First, an increase in the average sum-

mer temperature has a substantial negative effect on agriculture, forestry, and fishing

(see the last row of table 3). While the effect on this sector is intuitive and well studied

in the literature, we note that this sector only accounts for about 1% of national GDP
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(see, inter alia, Mendelsohn and Neumann (1999), Schlenker and Roberts (2006; 2009),

and Burke and Emerick (2015)).

Second, an increase in the average summer temperature also negatively affects the re-

tail and wholesale sectors, which account for 6.6% and 5.9% of national GDP, respec-

tively. There are several possible explanations for these effects. On the one hand, from

a psychological perspective, high temperatures may negatively affect customers’ percep-

tion of wait time (Baker and Cameron (1996)) and social interactions with strangers

(Griffit and Veitch (1971)). Thus, from a household production perspective (Ghez and

Becker (1975)), high temperatures may adversely impact what Starr-McCluer (2000)

calls “households’ shopping productivity,” inducing them to spend less time shopping

and therefore reducing retailers’ revenues. On the other hand, high summer temper-

atures may negatively affect the productivity of workers in what Cachon et al. (2012)

call interface areas, such as loading and unloading areas, which are difficult to cool with

air conditioning. This mechanism may also explain why the construction sector, which

accounts for 4.4% of national GDP, appears to be negatively affected by an increase in

the average summer temperature.

The two largest sectors of the U.S. economy are Services and Finance, insurance, and

real estate, accounting together for almost a half of national GDP. These sectors are both

negatively affected by an increase in the average summer temperature in the post-1997

sample (see table 3). Table 4 explores this post-1997 negative relationship in greater

detail, by further decomposing the two sectors into an exhaustive list of subcomponents.

An increase in summer temperature negatively affects Food services and drinking places,

which account for about 2% of national GDP (table 4). This could be a reflection of

the negative impact of high temperatures on agricultural output. As the supply of

agriculture-related products declines, prices increase, and if the establishments oper-

ating in the food services sector cannot immediately adjust their prices, they will expe-
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rience a decline in their profitability and may decrease production.3

Furthermore, an increase in summer temperatures has a substantial and negative effect

on the insurance sector, which accounts for about 2.6% of national GDP. One potential

explanation is that health insurance companies may have to make more payouts due to

the increased number of heat-induced hospitalizations. Two recent studies conducted

for the state of Washington have documented that hot, humid days increase the risk of

hospitalization and death (Isaksen et al. (2015a; 2015b)). Choudhary and Vaidyanathan

(2014) provide evidence that increases in summer temperatures are associated with an

increase in heat stress illness (HSI) hospitalizations.4 Focusing on community hospitals,

Merrill et al. (2008) report that the hospitalization costs from exposure to heat are in

the order of $40 million per year, billed roughly equally to government payers (Medicare

and Medicaid) and private insurance companies.

The real estate sector, which accounts for about 11.4% of national GDP, seems to be

negatively affected by an increase in the average summer temperature. The real es-

tate market is characterized by a “search-and-match” mechanism, a large part of which

takes place outdoors, and many prospective home-buyers search for houses in the sum-

mer (Ngai and Tenreyro (2014)). Higher summer temperatures may negatively affect

prospective home-buyers’ productivity in searching, thus impacting the overall sales

volume of this market.

Not all industry groups are negatively affected by an increase in summer temperatures.

The utilities and mining sectors, accounting for about 1.8% and 1.4% of national GDP,

respectively, appear to benefit from an increase in the average summer temperature

(see table 3). This could be due to the higher consumption of energy during warmer

summers, which translates into larger revenues for these industries.

3A psychological mechanism similar to the one mentioned above for the retail sector could also lead to
a decline in the demand for food services and drinking place in hot summer temperatures.

4Additionally, Chan et al. (2013) have shown that during the hot season in Hong Kong, hospital admis-
sions increased by 4.5% for every increase of 1 degree Celsius above the seasonal average temperature.
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Table 3: Industry group analysis
Pre-1997 Post-1997 Avg. GDP share

(post-97, %)
Services† 0.020 −0.206 25.7

(0.070) (0.075)∗∗∗

(0.050) (0.076)∗∗∗

Finance, insurance, real estate −0.209 −0.437 20.5
(0.241) (0.384)
(0.228) (0.158)∗∗∗

Manufacturing −0.058 0.067 12.9
(0.215) (0.623)
(0.102) (0.420)

Government −0.068 −0.051 12.2
(0.071) (0.165)
(0.063) (0.086)

Retail −0.052 −0.241 6.6
(0.073) (0.189)
(0.060) (0.083)∗∗∗

Wholesale −0.158 −0.284 5.9
(0.104) (0.171)∗

(0.062)∗∗ (0.163)∗

Communication/Information† −0.235 −0.294 4.5
(0.088)∗∗∗ (0.732)
(0.092)∗∗ (0.405)

Construction −0.224 −0.379 4.4
(0.236) (0.446)
(0.199) (0.194)∗

Transportation 0.150 0.189 3.0
(0.125) (0.221)
(0.196) (0.138)

Utilities 0.338 0.621 1.8
(0.248) (0.377)∗

(0.202)∗ (0.230)∗∗∗

Mining −0.153 0.954 1.4
(0.539) (1.524)
(0.572) (0.300)∗∗∗

Agriculture, forestry, fishing −2.489 −2.203 1.1
(0.995)∗∗ (0.969)∗∗

(0.443)∗∗∗ (0.502)∗∗∗

Notes: This table reports results for panel regressions of industry output growth, using the en-
tire cross-section of 50 states and the District of Columbia. All specifications include the lagged
dependent variable, and state and year fixed effects; the independent variable is the average
summer temperature. In each industry regression, states are weighted in the panel regression
by the proportion, averaged over the whole sample, of their industry output relative to that of
the whole country. The first column uses the 1963–1997 sample; the second column uses the
1997–2011 sample. The last column reports the share of national GDP that each industry ac-
counts for, averaged over the 1997–2011 sample. Two standard errors, the top clustered by year
and the bottom clustered by state, are in parentheses. ***, **, and * denote significance at the
1%, 5%, and 10% levels. Industries are classified according to the Bureau of Economic Analysis.
†: There are substantial differences between the pre- and post-1997 classifications of these in-
dustries; see appendix table A2.
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Table 4: Industry group analysis: Services and Finance, insurance, real estate
Post-1997 Ave GDP share

Services
Professional and business services −0.219 11.6

(0.127)∗

(0.098)∗∗

Educational services, health care, social assistance −0.005 7.7
(0.047)
(0.065)

Other services, except government −0.253 2.6
(0.136)∗

(0.103)∗∗

Food services and drinking places −0.387 2.0
(0.155)∗∗

(0.148)∗∗∗

Arts, entertainment, and recreation 0.417 1.0
(0.274)
(0.203)∗∗

Accommodation 0.025 0.9
(0.270)
(0.359)

Finance, insurance, real estate
Real estate −0.435 11.4

(0.400)
(0.125)∗∗∗

Federal Reserve banks, credit intermediation, −0.254 3.6
and related services (0.463)

(0.354)

Insurance, carriers and related activities −1.299 2.6
(0.631)∗∗

(0.548)∗∗

Securities, commodity contracts, and investments −0.287 1.3
(0.531)
(0.337)

Rental and leasing services, lessors of intangible assets −0.030 1.3
(0.244)
(0.290)

Funds, trusts, and other financial vehicles 1.027 0.2
(1.142)
(1.068)

Notes: This table reports results for panel regressions of industry output growth, using the
entire cross-section of 50 states and the District of Columbia. Industries are classified according
to the Bureau of Economic Analysis (see appendix table A2). All specifications include the lagged
dependent variable, and state and year fixed effects; the independent variable is the average
summer temperature. In each industry regression, states are weighted in the panel regression
by the proportion, averaged over the whole sample, of their industry output relative to the whole
country’s. The sample is 1997–2011. The last column reports the share of national GDP that
each industry accounts for. Two standard errors, the first clustered by year and the second
clustered by state, are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10%
levels.
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Overall, our results suggest that the effects of summer temperatures on aggregate eco-

nomic activity are not due to the isolated impact of rising temperatures on just a few

sectors of the economy. Rather, higher temperatures systematically affect a large cross-

section of industries, which in total account for more than a third of national GDP.

4.3 Regional analysis

To determine whether certain broad geographic areas are primarily responsible for the

effects of seasonal temperatures on GSP, we divide the U.S. into four regions: North,

South, Midwest, and West. These regions are identified according to the classification of

the U.S. Census Bureau (see appendix A.4 for the list of states in each region). We then

estimate the effects of seasonal temperatures for each region using a panel regression

of the growth rate of state-level GSP on temperatures.

The results of this regional analysis (reported in table 5) document that the effects

of summer and fall temperatures are statistically and economically significant in the

South. The estimated coefficients for the South are substantially larger than their

country-level counterparts identified in table 1. This indicates that the growth rates

of GSP in Southern states are particularly sensitive to summer and fall temperatures,

while other regions do not appear to be systematically affected.

We argue that the significance of the estimated coefficients for the South region can be

attributed to the relatively higher average temperatures that characterize the states in

this area. To provide evidence in support of this claim, we sort states in descending

order, according to their average summer temperature. As expected, the states in the

South region occupy the highest positions (see appendix table A3). We then estimate

the regression coefficients of equation (4) for the ten states with the highest summer

temperatures, and successively re-estimate these coefficients, each time adding the next

temperature-sorted state. The results of this exercise are reported in figure 2.
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Table 5: Effects of seasonal temperatures on GSP growth in different regions

Winter Spring Summer Fall
North 0.329 0.065 0.240 −0.255

(0.173)∗ (0.296) (0.257) (0.233)
(0.238) (0.176) (0.232) (0.184)

South −0.087 0.152 −0.326 0.571
(0.167) (0.159) (0.163)∗∗ (0.194)∗∗∗

(0.077) (0.087)∗ (0.085)∗∗∗ (0.063)∗∗∗

Midwest 0.010 −0.158 0.043 −0.116
(0.089) (0.144) (0.162) (0.128)
(0.055) (0.104) (0.076) (0.068)∗

West −0.000 −0.155 0.028 −0.006
(0.096) (0.143) (0.154) (0.167)
(0.061) (0.078)∗∗ (0.145) (0.162)

Notes: This table reports results for panel regressions of state GSP growth rate on temperatures,
using the cross-section of U.S. states in each region. Regions are classified according to the Cen-
sus Bureau. All specifications include the lagged dependent variable, and state and year fixed
effects. States are weighted in the panel regression by the proportion, averaged over the whole
sample, of their GSP relative to the region’s GDP. The columns refer to the analysis conducted
by regressing jointly on the four seasonal averages. Winter is defined as Jan.–Mar., spring as
Apr.–Jun., summer is Jul.–Sep., fall is Oct.–Dec. Temperatures are in degrees Fahrenheit. The
sample is 1957–2012. Two standard errors, the first clustered by year and the second clustered
by state, are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels.

The bottom left panel of figure 2 documents that the estimated summer coefficient for

the ten warmest states is about three times as large as their whole-country counterpart.

The absolute value of the summer coefficient declines sharply past the first 15 states,

thus highlighting a nonlinearity in the impact of rising temperatures for this season.

Furthermore, a comparison of the bottom two panels of figure 2 reveals that the dra-

matic rise of the impact coefficient for the warmest states is precisely identified for the

average summer temperature, whereas the coefficient of the average fall temperature is

characterized by a higher degree of uncertainty. Winter and spring temperatures do not

seem to play a major role in this part of our analysis.
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Figure 2: Effects of seasonal temperatures in temperature-sorted states. Each panel reports
the estimated coefficients of the average temperature for the corresponding season. Dots corre-
sponds to the coefficients estimated for the number of states reported in the horizontal axis. The
grey areas represent 95% confidence intervals. States are sorted in descending order according
to their average summer temperature. Each state is weighted by its relative GSP in the panel
regressions. State and year fixed effects are included. Standard errors are clustered at the year
level.

5 Additional results

In this section we conduct a series of additional exercises to confirm and extend the

analysis above. In section 5.1 we document that the temperature effects that we identi-

fied are on the growth rate rather than on the level of output. This evidence motivates
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the exercise in section 5.2, in which we combine the estimated impact coefficients from

section 3 with various projections of temperature changes over the next 100 years to

provide an assessment of the long-term impact of rising temperature on U.S. economic

growth. In section 5.3 we conclude our investigation by showing that our main finding

on the effect of summer temperatures is robust to alternative specifications.

5.1 Growth vs. level effects

In this section we test whether the response of GSP to temperature is an effect on the

level of output or on its growth rate. It is important to distinguish between these two

hypotheses, because the effects on the growth rate compound over time and thus are

more quantitatively important than effects on the level of output (Pindyck (2011; 2013),

Dell et al. (2012)).

To illustrate the quantitative significance of growth effects compared to level effects, and

to set the stage for our empirical methodology, consider the following simple example.

Assume that the aggregate output of a certain state follows the process:

yt = α + yt−1 + βTt + βlagTt−1 + εt, (7)

where β and βlag denote the impacts of current and lagged average temperatures T (of,

for instance, the current and last summer) on output growth. For simplicity, we assume

that εt = 0, ∀t. Consider a shock in year t = 1 that permanently increases the average

temperature T by one degree Fahrenheit, from T0 = 0 to Tt = 1,∀t ≥ 1 (illustrated in the

left panel of figure 3). This temperature path is motivated by climatologists’ predictions

that temperatures will rise permanently by the middle and end of this century (see

section 5.2 for details). Along this hypothetical temperature path, the level and the
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growth rate of output would be

yt = (y0 + β) + (t− 1) [α + (β + βlag)] , and (8)

∆y1 = α + β, and ∆yt = α + (β + βlag) , ∀t ≥ 2, (9)

respectively. We consider three cases. If β = βlag = 0, then temperatures have no

economic effects. We refer to this situation as the No Effect case. If β + βlag = 0, then an

increase in temperature has a permanent impact on the level of output (see equation (8)),

but it only affects the growth rate of output for one period (see equation (9)). We refer to

this situation as the Level Effect case. If β + βlag 6= 0, temperature permanently affects

both the level and the growth rate of output. We refer to this situation as the Growth

Effect case.

We illustrate these three scenarios in the right panel of figure 3. Over the span of 50

years, if temperatures permanently affect the growth rate of output (the Growth Effect

case), then the level of output would be substantially lower than what it would be in

the No Effect case (dashed-dot vs. dashed line). This is in sharp contrast to the case in

which temperature has a permanent effect only on the level of output (the Level Effect

case). In this scenario, after 50 years output is only marginally lower compared to the

baseline case (solid vs. dashed line).

We follow the logic of this example to test whether average seasonal temperatures affect

the growth rate of GSP in the data. Specifically, we estimate the following equation:

∆yi,t =
∑
s∈S

βsTi,s,t +
∑
s∈S

βlag,sTi,s,t−1︸ ︷︷ ︸
lagged terms

+ρ∆yi,t−1 + αi + αt + εi,t. (10)

Then we test whether we can reject the null hypothesis that the sum of the contempora-

neous and lagged coefficients for each season is equal to zero, that is, H0 : βs + βlag,s = 0,
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Figure 3: Growth vs. level effect. The left panel depicts a permanent increase of 1 degree
Fahrenheit in the level of temperature that takes place at year 1. The right panel shows the
levels of output associated with the temperature path reported in the left panel. The three lines
are constructed according to equation (7), by setting β = βlag = 0 (dashed line), β = −βlag =

−0.170 (solid line), and β = −0.170, βlag = −0.153 (dash-dot line). In all three cases µ = 2 and
εt = 0, ∀t.

for each season s.5

Our results, reported in table 6, indicate that lagged temperatures are generally statis-

tically significant, with the exception of the winter season. The signs of the effects for

summer and fall do not change when considering the lagged temperatures. Most impor-

tantly, we can strongly reject the null hypothesis that the sums of the contemporaneous

and lagged temperature coefficients are equal to zero (βs+βlag,s = 0) for summer and fall.

This evidence supports the hypothesis that increases in summer and fall temperatures

have lasting effects on output growth.

5.2 Combining our results with climate projections

In this section we provide a quantification of the magnitudes of the effects of summer

and fall temperatures estimated in panel regression (4) over a longer horizon. This ex-

ercise needs to be interpreted with caution, since it assumes that the impact coefficients
5Note that by setting βs ≡ β/4, βlag,s ≡ βlag/4, for each season s, we obtain the specification for average

annual temperature in (3) augmented with lagged temperature. We omit this case from our investigation,
since we did not find any statistically significant effect associated with annual temperatures in table 1.
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Table 6: Growth vs. level effects

Winter Spring Summer Fall
Contemporaneous temp. −0.008 −0.012 −0.170 0.109

(0.051) (0.059) (0.076)∗∗ (0.050)∗∗

(0.029) (0.032) (0.045)∗∗∗ (0.038)∗∗∗

One-year lagged temp. 0.004 0.121 −0.153 0.066
(0.053) (0.063)∗ (0.079)∗ (0.060)
(0.023) (0.039)∗∗∗ (0.053)∗∗∗ (0.029)∗∗

Sum of coefficients −0.040 0.109 −0.323 0.174
(0.084) (0.086) (0.115)∗∗∗ (0.077)∗∗

(0.031) (0.045)∗∗ (0.077)∗∗∗ (0.052)∗∗∗

Wald test’s p-value [0.961] [0.208] [0.007] [0.027]
[0.893] [0.018] [0.000] [0.002]

Notes: This table reports results of the growth vs. level regression (10). The first row (“Contem-
poraneous temp.”) reports estimates for coefficient β of the effect of contemporaneous tempera-
ture on economic growth, while the second row (“One-year lagged temp.”) reports estimates for
coefficient βlag of the effects of one-year lagged temperature. The third row (“Sum of coefficients”)
reports the sum of β and βlag. The last row (“Wald test p-value”) reports the p-values, the first
clustered by year and the second clustered by state, for the Wald test of whether β+βlag is signif-
icantly different from zero. Temperatures are in degrees Fahrenheit. The sample is 1957–2012.
The regressions are weighted by constant GSP shares. Two standard errors, the first clustered
by year and the second clustered by state, are in parentheses. ***, **, and * denote significance
at the 1%, 5%, and 10% levels.

estimated in our main analysis do not change over the time period under consideration,

and it ignores the uncertainty about the point-estimates of the coefficients. Equiva-

lently, one can interpret this case as a “business as usual” benchmark, in which there

is no adaptation or mitigation, and the effects of temperatures on economic growth in

section 3 remain unchanged over the long horizon.

To quantify the potential long-term relevance of the coefficients estimated in section 3,

we use two approaches to forecast long-term changes in seasonal temperatures. In the

first approach we employ our dataset to estimate the dynamics of the temperature pro-

cess by means of a simple autoregressive process augmented with a linear time trend.

In the interest of space, we report the estimated coefficients in appendix section A.5 and

table A4. The results document the clear presence of a positive time trend in average

temperatures for all the seasons, and a possibly more robust trend for summer tem-
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peratures compared to the other seasons.6 Focusing on summer and fall (the seasons

whose coefficients are statistically significant in table 1), our projections indicate that in

100 years seasonal temperatures will on average be 3.6oF and 2.1oF higher, respectively.

This approach should be interpreted with caution, because it extrapolates long-term

temperature changes using a short sample.

In the second approach, we employ projections from the climatology literature. The

IPCC report by Christensen et al. (2007) calculates the regional averages of seasonal

temperature projections from a set of 21 global models in the multimodel dataset (MMD)

for the A1B scenario.7 We focus on the regions in the closest proximity to the U.S. and

construct average seasonal projections across those regions. The projected increases

in the average summer and fall temperatures that we obtain with this methodology

are somewhat more aggressive compared to the linear trend forecasts and are typically

around 6oF (see appendix A.5).

There is a clear advantage to using the projections of climatologists, as these forecasts

are the outcomes of models that take into account the expected evolution and interaction

of demographic, economic, and environmental variables. However, we should also note

some of the drawbacks. First, the projections by Christensen et al. (2007) lack a specific

projection for the Western part of the country (see appendix figure A1). We mitigate

this issue by also considering the projected temperature increases for the regions in

close proximity to the U.S. Second, their projections are based on the meteorological

definition as opposed to the astronomical definition of seasons that we have adopted

in our analysis. Given that the projected increase is quite stable across seasons (the

only notable exception being Alaska), we regard this as a relatively minor shortcoming.

Third, these forecasts are only available for the A1B scenario, that is, one in which the
6This finding is consistent with the analysis of Karl, Melillo and Peterson (2009, 28), who stated: “On

a seasonal basis, most of the United States is projected to experience greater warming in summer than in
winter.”

7The A1B scenario describes a future world of very rapid economic growth, global population that peaks
in mid-century and declines thereafter, the rapid introduction of new and more efficient technologies, and
a balance across all energy sources.
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variables under consideration are expected to grow very rapidly.

We combine each set of temperature projections with the impact coefficients that we

estimated in section 3. Throughout our analysis, we focus on the coefficients for only the

summer and the fall seasons, given the lack of statistical significance of the coefficients

for winter and spring. We consider two sets of estimates: 1) the one computed on the

whole sample (β̂summer = −0.154, β̂fall = 0.102), and 2) the one computed on the 1990-

onwards sample (β̂summer = −0.254, β̂fall = 0.031). In each case, we compute the projected

impact on the growth rate of GDP as:

E [∆GDP ] =
∑

s∈{summer,fall}

E [∆Ts]× β̂s,

where E [∆Ts] and β̂s denote the expected change in the average temperature of season

s and the impact coefficient of season s, respectively.

We report the results of our analysis in table 7. The top row (“Whole sample estimates”)

reports predictions using the coefficients estimated on the full sample. It shows that

the projected trend in rising temperatures is expected to reduce the growth rate of U.S.

output by 0.2 to 0.4 percentage points over the next 100 years, depending on the specific

set of temperature projections being employed. These figures are not negligible: given a

historical average growth rate of nominal U.S. GDP of about 4% per year, our first set of

estimates implies a possible reduction of up to 10% of the growth rate.

The results are more dramatic when we use estimates obtained from the post-1990 sam-

ple (see the row “Post-1990 estimates”). In this case, estimated reductions in output

growth due to rising temperatures are between 0.85 and 1.5 percentage points. Thus,

assuming no change in the way in which seasonal temperatures affect economic growth,

the projected increases in summer and fall temperatures could potentially reduce eco-

nomic growth by up to 1.5 percentage points, which is more than a third of the historical

average nominal U.S. GDP growth rate.
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Table 7: Long-term impact of rising temperatures

Linear IPCC Projections
Trend [1] [2] [3] [4] [5]

Whole-sample estimates −0.34 −0.42 −0.27 −0.38 −0.20 −0.24

Post-1990 estimates −0.85 −1.52 −1.35 −1.50 −1.28 −1.23

Notes: This table reports the projected reduction in the growth rate of GDP over the next 100
years. The row “Whole-sample estimates” uses the estimated coefficients in table 1 (β̂summer =
−0.154, β̂fall = 0.102), while the row “Post-1990 estimates” uses the last estimated coefficients of
figure 1 (β̂summer = −0.254, β̂fall = 0.031). The figures in the column labeled “Linear Trend” use
the projected temperature increases obtained from the estimates in table A4. The numbers in
column [1] are obtained by averaging the IPCC projected temperature changes for East US/East
Canada, Midwest, and East US; the numbers in column [2] are obtained by averaging the IPCC
projected temperature changes for East US/East Canada, Midwest, East US, and Alaska; the
numbers in column [3] are obtained by averaging the IPCC projected temperature changes for
Midwest and East US; the numbers in column [4] are obtained by averaging the IPCC projected
temperature changes for Alaska, Midwest, and East US; the numbers in column [5] are obtained
by averaging the IPCC projected temperature changes for all the regions in and around the U.S.
(see appendix table A5 for details).

5.3 Robustness checks

In this section we check the robustness of our results to different specifications of main

regression (4). The results are reported in table 8. Throughout the table (except the

row “Spatial correlation”), we report two standard errors, one clustered by year and one

clustered by state, with the corresponding significance levels. Overall, the table shows

that the negative relationship between average summer temperature and GSP growth

is very robust. We also document that the positive relationship between average fall

temperature and growth is not supported in several robustness checks.

The panel labeled “Alternative panel weights” reports the results obtained from using

different weighting schemes for the states in the panel regression. Specifically, we

weight states by population, area, and time-varying GSP. The last weighting scheme

takes into account possible changes over time in the relative distribution of output

across states (see appendix A.2.2). The results indicate that the signs of the estimated

coefficients are generally aligned with the main findings in section 3.
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In the panel labeled “Alternative GSP measures” we report the results obtained by re-

placing the dependent variable of our regression with per-capita GSP, real GSP, or pri-

vate industries’ GSP. The results of the regressions using these alternative measures

of GSP demonstrate that our earlier results are not driven by the growth rate of popu-

lation, inflation, or the public sector. The alternative measure results also confirm our

main finding that an increase in average summer temperature has a strong negative ef-

fect on economic growth rates. In some cases, the magnitudes of the estimated summer

coefficients are even larger than those obtained in our baseline specification. The effect

of the fall season, however, is less robust: an increase in the average fall temperature

does not appear to have a significant effect on real GSP growth.

We also check the robustness of our findings to various definitions of seasons (see the

panel “Alternative definitions of seasons” in table 8. Specifically, in the row labeled “Me-

teorological,” all seasons are shifted backwards by one month. This means that winter

is defined as including December, January, and February; spring is defined as March,

April, and May; summer is defined as June, July, and August; and fall is defined as

September, October, and November. In the row labeled “Core Seasonal Months,” we

focus only on the subset of months that fall within both the astronomical and meteoro-

logical definitions of a given season. Here, winter is defined as January and February,

spring as April and May, summer as July and August, and fall as October and November.

The results indicate that the summer effect is generally robust to the various definitions

of seasons. When we adopt the meteorological definition, the coefficient on summer tem-

perature is negative, although only statistically significant at the 5% level if standard

errors are clustered by state. This may be due to the inclusion of the transitional month

of June, during which temperatures have not yet fully adjusted to the seasonal summer

average. Indeed, when we only focus on the subset of months that are associated with

both the astronomical and meteorological definitions of each season, we get consistently

strong results for the summer (see the row “Core Seasonal Months”). This suggests that

the economic effect of summer temperatures is mainly driven by the months of July
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and August. The fall effect, in contrast, is not significant under any of the alternative

seasonal definitions.

In the panel labeled “Alternative temperature data” in table 8, we check the robustness

of our results to different aggregation methods, deseasonalization methods, and sources

of temperature data. As the panel shows, both the summer and fall effects are robust

to aggregating station-level weather data to the state level using county population in-

stead of county area (see the row “Temp. weighted by pop.”) and to deseasonalizing

temperatures using pre-1950 monthly dummies (see the row “Pre-1950 deseasonaliza-

tion”). Appendix A.2.1 describes method that we use to deseasonalize the temperature

data. Furthermore, in the row “Non-deseasonalized gridded temp.,” we employ gridded

temperature data that is not deseasonalized from the NOAA nClimDiv dataset to show

that the deseasonalization of weather data does not drive our results.

In the panel labeled “Other” in table 8 we check the robustness of our results to several

additional variations of our main specification. In the row labeled “Spatial correlation,”

we adjust standard errors to take into account the possible dependence induced by the

geographical proximity of the states. Specifically, we employ the correction proposed by

Conley (1999) and adapted by Hsiang (2010) to the study of climate-related variables

with spatial correlation. We used a radius of 300 km around the center of each state,

with a uniform spatial weighting kernel. The ordinary least squares regression is an

unweighted state-level panel regression. Our results again show that the summer effect

is statistically significant, at the 10% level, but the fall effect is not.
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Table 8: Robustness checks

Winter Spring Summer Fall

Alternative panel weights
Time-varying GSP 0.008 −0.008 −0.148 0.105

(0.051) (0.067) (0.077)∗ (0.058)∗

(0.026) (0.030) (0.043)∗∗∗ (0.042)∗∗

State population 0.028 −0.025 −0.132 0.131
(0.053) (0.069) (0.071)∗ (0.061)∗∗

(0.025) (0.039) (0.039)∗∗∗ (0.043)∗∗∗

State area 0.018 0.012 −0.098 0.079
(0.062) (0.074) (0.066) (0.063)
(0.033) (0.045) (0.054)∗ (0.064)

Alternative GSP measures
Per-capita GSP −0.007 0.018 −0.119 0.098

(0.047) (0.068) (0.071)∗ (0.053)∗

(0.025) (0.033) (0.049)∗∗ (0.040)∗∗

Real GSP −0.070 −0.016 −0.194 −0.006
(0.043) (0.081) (0.110)∗ (0.068)
(0.040)∗ (0.037) (0.087)∗∗ (0.053)

Private industries only 0.013 0.010 −0.207 0.115
(0.063) (0.083) (0.087)∗∗ (0.069)∗

(0.029) (0.041) (0.060)∗∗∗ (0.049)∗∗

Alternative definitions of seasons
Meteorological 0.026 −0.040 −0.083 0.025

(0.043) (0.053) (0.074) (0.055)
(0.016) (0.039) (0.038)∗∗ (0.033)

Core seasonal months 0.015 −0.026 −0.145 0.036
(0.041) (0.050) (0.066)∗∗ (0.050)
(0.016) (0.024) (0.033)∗∗∗ (0.027)

Alternative temperature data
Temp. weighted by pop. 0.012 −0.004 −0.129 0.094

(0.048) (0.066) (0.074)∗ (0.057)∗

(0.023) (0.029) (0.041)∗∗∗ (0.034)∗∗∗

Pre-1950 deseasonalization 0.000 0.003 −0.154 0.102
(0.049) (0.065) (0.072)∗∗ (0.055)∗

(0.025) (0.032) (0.047)∗∗∗ (0.040)∗∗

Non-deseasonalized gridded temp. 0.001 −0.005 −0.167 0.100
(0.042) (0.057) (0.064)∗∗∗ (0.047)∗∗

(0.023) (0.028) (0.047)∗∗∗ (0.035)∗∗∗

↪→ Continued on Next Page
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Table 8: Robustness checks (continued)

Winter Spring Summer Fall
Other
Spatial correlation 0.011 −0.020 −0.109 0.024

(0.046) (0.061) (0.066)∗ (0.058)

Controlling for precipitation 0.003 0.008 −0.169 0.093
(0.047) (0.069) (0.077)∗∗ (0.056)∗

(0.025) (0.039) (0.048)∗∗∗ (0.037)∗∗

Controlling for temp. vol. −0.009 −0.013 −0.138 0.106
(0.050) (0.062) (0.071)∗ (0.055)∗

(0.024) (0.030) (0.042)∗∗∗ (0.040)∗∗∗

Excluding AR(1) 0.023 0.014 −0.156 0.086
(0.052) (0.073) (0.080)∗ (0.059)
(0.029) (0.039) (0.054)∗∗∗ (0.036)∗∗

Excluding Alaska and Hawaii −0.001 0.000 −0.153 0.118
(0.048) (0.065) (0.071)∗∗ (0.056)∗∗

(0.026) (0.032) (0.048)∗∗∗ (0.040)∗∗∗

Notes: This table reports robustness checks for main regression (4). Temperatures are in degrees
Fahrenheit. The sample is 1957–2012, except for the row with private industries only, in which
the sample is 1963–2011, and the row with real GSP, in which the sample is 1987–2012. In all
regressions except those in “Alternative panel weights” and “Spatial correlation,” each state is
weighted by the proportion, averaged over the whole sample, of its GSP relative to the whole
country’s GDP. In “Time-varying GSP,” each state in each year is weighted by the proportion of
its GSP relative to the whole country’s GDP in that year. In “State population” and “State area,”
each state is weighted by the proportion, averaged over the whole sample, of its population or
area, respectively. In the row “Core seasonal months,” winter is Jan.–Feb., spring is Apr.–May.,
summer is Jul.–Aug., fall is Nov.–Dec. In the row “Spatial correlation”, all states are equally
weighted. The first number in parentheses below each estimated parameter is the standard
error clustered by year, while the second number is the standard error clustered by state. ***,
**, and * denote significance at the 1%, 5%, and 10% levels.

We also include average precipitation (the row “Controlling for precipitation”) and tem-

perature volatility (the row “Controlling for temp. vol.”) in our main specification. The

temperature volatility of season s in year t is calculated as the standard deviation of the

deseasonalized temperature observations in that season (see appendix A.2.1 for details

on deseasonalization). We find that controlling for these two additional sets of control

variables does not alter our main conclusions regarding the effect of summer and fall

temperatures on GSP growth.

Our results are robust to the exclusion of the lagged growth rate of GSP. This finding
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is important in light of the so-called Nickell (1981) bias, which arises in the context of

dynamic panel models with fixed effects in a short sample. The results shown in row

“Excluding AR(1)” of table 8 are from panel regressions that do not included lagged

GSP. As shown, the negative effect of summer temperature is still economically and

statistically significant. We also note that the magnitudes of the estimated coefficients

are very close to the ones obtained in table 1, which can be interpreted as evidence

for a small overall impact of the bias on our results. In related studies, Judson and

Owen (1999), Acemoglu et al. (2014), and Deryugina and Hsiang (2014) reach similar

conclusions regarding the extent of the bias.

Finally, the row labeled “Excluding Alaska and Hawaii” shows that our results are ro-

bust to excluding the two non-contiguous states of Alaska and Hawaii. In summary,

the battery of tests using various alternative specifications has shown that the effect of

summer temperatures is generally very robust, but that of fall temperatures generally

less so.

6 Conclusion

In this paper, we analyze the effects of increases in average seasonal temperatures on

economic growth across U.S. states. We find that an increase in the average summer

temperature has a significant and robust negative effect on GSP growth. We also find a

positive, albeit weaker and less robust, effect of an increase in the average fall tempera-

ture. In net, the summer effect dominates, and the total impact of increases in seasonal

temperatures is substantial: under the business-as-usual scenario, the projected trends

in rising temperatures could depress U.S. economic growth by up to a third.

Our results are informative for the calibration of the climate damage functions in gen-

eral equilibrium models, and they should be helpful as well in advancing the analysis of
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the long-term effects of climate change (e.g., Stern (2007), Nordhaus and Sztorc (2013),

Bansal and Ochoa (2011), and Giglio et al. (2015)). These results highlight the impor-

tance of building the next generation of equilibrium models for the environment that

take into account the heterogeneous effect that rising temperatures have on the cross-

section of industries and explictly modeling the effects of seasonal temperatures on labor

productivity and other economic variables.

Finally, the finding that the effect of summer temperatures is stronger in the states

that are on average warmer than the rest of the country is related to the nonlinear

effects of rising temperatures in the studies of Schlenker and Roberts (2006; 2009) and

Burke, Hsiang and Miguel (2015). Future research should employ methodologies from

these studies to further investigate potential nonlinearities in the effects of seasonal

temperatures on the cross-section of industries.
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Online Appendix

A.1 Weather Stations

We use weather data from 129 weather areas featuring a total of 10,128 individual

weather stations, with the number of weather stations per area ranging from 2 to 295.

The data for a weather area are created by collecting the earliest available data from a

currently active weather station in that area. The data series is then extended further

by using another weather station in the area.1 For example, the weather data series for

the Nashville, TN area is compiled from three individual weather stations over the time

period 1871–2014.2

Using data for weather areas, as opposed to individual weather stations, avoids the

problem of missing daily data without sacrificing a significant amount of temperature

information because the correlation of average temperature reported across stations in

a given area is very high. For example, table A1 shows the correlation between daily

average temperatures reported by individual stations in the Nashville area and in the

Las Vegas area. Individual stations are included in the table if they report at least

60 daily observations per season for each season in the sample 1957–2012. There are

54 stations in the Nashville area and 8 meet the inclusion criteria, and there are 83

stations in the Las Vegas area and 7 meet the inclusion criteria. The correlations in

daily temperature reported across stations are greater than 0.99.

Next, we calculate the correlation between individual stations in each area over the

20-year period with the greatest number of individual stations meeting the inclusion

criteria of 60 daily observations per season. Twenty-year periods beginning in 1959–

1962 have the greatest number of stations meeting the inclusion criteria for Nashville
1http://threadex.rcc-acis.org/
2http://threadex.rcc-acis.org/threadex/process_records
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and the 20-year period beginning in 1969 has the greatest number of stations meeting

the inclusion criteria for Las Vegas. This increases the number of individual stations

to 21 for Nashville and to 16 for Las Vegas. For the 20-year period beginning in 1959,

the minimum correlation between any two stations in Nashville is 0.9882, and for the

20-year period beginning in 1969, the minimum correlation between any two stations in

Las Vegas is 0.9785.

Finally, in order to consider all stations in each area, we impute missing seasonal data

for individual stations that report any daily data in 1957–2012. This includes 53 of 54

weather stations in Nashville and 78 of 83 weather stations in Las Vegas. Specifically,

we consider the seasonal average for a station to be missing if the station does not report

at least 60 daily observations in that season. We replace missing seasonal data with the

mean of the seasonal average of all stations. The mean correlation between stations in

Nashville is 0.9959 and the mean correlation between stations in Las Vegas is 0.9463.
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A.2 Additional details of the empirical analysis

A.2.1 Deseasonalization

We regress each raw temperature observation Tj,τ at station j and day τ using the fol-

lowing specification:

Tj,τ =
12∑
m=1

γmIj,m + αj + ετ ,

where Ij,m is a dummy for month m at station j, αj is a station fixed effect, and ετ is an

error term. Then the deseasonalized station observation is

T̃j,τ ≡ Tj,τ − (
12∑
m=1

γ̂mIj,m + α̂j).

In the row labeled “Pre-1950 deseasonalization” in table 8, we estimate γm and αj using

weather data up to only 1950.

A.2.2 GSP weights

In panel regressions using constant GSP weights, state i’s weight is calculated as the

proportion of state i’s total GSP over the sample 1957–2012 relative to national GDP (the

total of all states’ GSP) over the sample 1957–2012. Specifically, let gi,1, . . . , gi,T denote

state i’s GSP in year t = 1, . . . , T ; then the weight of state i in the main specification in

the panel regression (section 3) is
∑T

t=1 gi,t∑T
t=1

∑51
i=1 gi,t

. In this way, the weight of each state in

the regression is time invariant.

In the “Time-varying GSP” row of table 8, we use time-varying GSP weights instead of

constant GSP weights. In this panel regression, each state i in year t is weighted by the

proportion of state i’s GSP in year t relative to national GDP in year t. Specifically, the
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weight of state i in year t is gi,t∑51
i=1 gi,t

.

A.3 Industry group classification

Table A2 provides the classifications of the industry groups used in the industry anal-

ysis in section 4.2, with industry output data and classifications from the Bureau of

Economic Analysis. The column “Pre-1997 classification” uses the industry group cate-

gories of the Standard Industrial Classification (SIC). The column “Post-1997 classifica-

tion” uses the industry group categories of the North American Industry Classification

System (NAICS).

A.4 Definitions of U.S. regions and Ranking of States

We follow the U.S. Census Bureau and identify four geographic regions:

1. North: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New

York, Pennsylvania, Rhode Island, Vermont;

2. Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Ne-

braska, North Dakota, Ohio, South Dakota, Wisconsin;

3. South: Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Mary-

land, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas,

Virginia, Washington D.C., and West Virginia;

4. West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada,

New Mexico, Oregon, Utah,Washington, and Wyoming.
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Table A3: State Ranking by Average Summer Temperature

Rank State Avg. Summer Temp Rank State Avg. Summer Temp
1 Florida 80.78 26 Iowa 69.13
2 Louisiana 80.18 27 West Virginia 68.88
3 Texas 79.87 28 Nevada 68.61
4 Mississippi 78.44 29 South Dakota 68.02
5 Oklahoma 78.21 30 Rhode Island 67.92
6 Alabama 77.67 31 Utah 67.85
7 Georgia 77.64 32 Connecticut 67.61
8 South Carolina 77.47 33 Pennsylvania 67.03
9 Arkansas 77.20 34 Massachusetts 66.59
10 Arizona 77.06 35 New York 64.70
11 Kansas 74.70 36 Wisconsin 64.64
12 North Carolina 74.30 37 Michigan 64.54
13 Tennessee 74.21 38 North Dakota 64.44
14 Missouri 73.65 39 Minnesota 64.32
15 California 73.07 40 Colorado 63.67
16 Kentucky 72.92 41 New Hampshire 62.95
17 Delaware 72.89 42 Oregon 62.77
18 Maryland 72.32 43 Vermont 62.25
19 Virginia 71.84 44 Washington 62.07
20 Illinois 71.58 45 Montana 61.72
21 New Jersey 70.87 46 Maine 61.66
22 Indiana 70.64 47 Idaho 61.62
23 Nebraska 69.80 48 Wyoming 61.25
24 New Mexico 69.63 49 Alaska 47.97
25 Ohio 69.45

Notes: Hawaii and the District of Columbia are not included. Summer is defined as July, Au-
gust, and September. Average summer temperature is calculated over the sample 1957–2012.
Monthly temperature data are from NOAA.

Table A3 displays each state’ ranking by average summer temperature and the average

summer temperature used to determine this rank. This ranking is used to determine

the samples for the results presented in figure 2.

A.5 Temperature projections in section 5.2

Linear projections. We use a simple autoregressive process augmented with a linear

time trend to assess the projected growth rate of temperature over the next 100 years.

We specify the process as:

Ti,t = µiT + ρiTTi,t−1 + βi · t+ σiT ε
i
w,t, (A1)
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Table A4: Dynamics of Average Temperature (1960–2012)

Whole Year Winter Spring Summer Fall

C
ou

nt
ry Trend 0.041∗∗∗ 0.071∗∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.021∗∗

(0.006) (0.015) (0.010) (0.008) (0.009)
AR(1) 0.077 −0.048 0.143 0.061 −0.212

(0.149) (0.146) (0.143) (0.141) (0.139)

N
or

th

Trend 0.048∗∗∗ 0.080∗∗∗ 0.041∗∗∗ 0.035∗∗∗ 0.036∗∗∗

(0.008) (0.023) (0.011) (0.009) (0.012)
AR(1) 0.047 0.147 −0.000 −0.184 −0.328∗∗

(0.143) (0.149) (0.138) (0.132) (0.133)

So
ut

h Trend 0.040∗∗∗ 0.075∗∗∗ 0.033∗∗∗ 0.031∗∗∗ 0.019∗∗

(0.008) (0.022) (0.012) (0.009) (0.009)
AR(1) 0.160 0.200 0.070 −0.047 −0.359∗∗∗

(0.151) (0.146) (0.145) (0.140) (0.132)

M
id

w
es

t Trend 0.042∗∗∗ 0.088∗∗∗ 0.028∗ 0.031∗∗∗ 0.017
(0.011) (0.027) (0.016) (0.011) (0.013)

AR(1) 0.185 0.072 0.158 0.017 −0.247∗
(0.149) (0.148) (0.144) (0.141) (0.137)

W
es

t Trend 0.040∗∗∗ 0.064∗∗∗ 0.035∗∗∗ 0.040∗∗∗ 0.020
(0.007) (0.012) (0.013) (0.008) (0.013)

AR(1) 0.001 −0.271∗∗ 0.126 −0.024 0.003
(0.143) (0.136) (0.141) (0.143) (0.142)

Notes: This table reports the estimates of the autoregressive coefficient and of the time trend
for temperature. The column “Whole Year” refers to the annual temperature estimation, while
the columns “Winter,” “Spring,” “Summer,” and “Fall” refer to the corresponding season. The row
“Country” reports the estimates obtained using national aggregate temperature data, while the
subsequent rows refer to the corresponding regions. All the regressions also include an intercept,
which is not reported in the interest of space. The sample is 1960–2012.

where i indexes the four seasons. For consistency with the estimations reported in the

main text, we focus on the 1960–2012 sample period. The results of this estimation,

reported in Table A4, document the clear presence of a positive time trend in average

temperatures for all seasons, and a possibly more robust trend for summer tempera-

tures compared to the other seasons. Ignoring the AR(1) coefficients (which are not

statistically significant at the whole-country level), the first panel of table A4 suggests

that in 100 years the average summer and fall temperatures will be 0.0036× 100 = 3.6oF

and 0.021× 100 = 2.1oF higher, respectively.

Climatologists’ projections. The projections are obtained from Christensen et al.

(2007), who report projections over the next century for temperature and precipitation
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changes. In their procedure, the mean temperature and precipitation responses are first

averaged for each model over all available realizations of the 1980–1999 period from the

20th Century Climate in Coupled Models (20C3M) simulations and the 2080–2099 pe-

riod of A1B. The A1 storyline and scenario family describe a future world of very rapid

economic growth, global population that peaks in mid-century and declines thereafter,

and the rapid introduction of new and more efficient technologies. Major underlying

themes are convergence among regions, capacity building, and increased cultural and

social interactions, with a substantial reduction in regional differences in per capita

income. The A1 scenario family develops into three groups that describe alternative

directions of technological change in the energy system. The three A1 groups are dis-

tinguished by their technological emphasis: fossil intensive (A1FI), nonfossil energy

sources (A1T), or a balance across all sources (A1B).

In figure A1, we show the map of the regions we used to form projections for the entire

U.S. based on the regional projections provided by Christensen et al. (2007).

In table A5, we report the details of the projections used for the analysis of section 5.2 of

main text. Panel A documents the raw projections of Christensen et al. (2007). The col-

umn denoted “Abbr.” corresponds to the abbreviation used by Christensen et al. (2007);

the column “Approx. area” is our approximate description of the associated area; the

column “Coordinates” provides the geographical coordinates of each area as in Chris-

tensen et al. (2007), with the exception of the “WNA” area in which we replaced “50E”

with “50W”; and the column “Surface” provides the area of each region in square miles

obtained from Google maps. The last four columns report the projections of Christensen

et al. (2007) for each season, defined according to the meteorological convention. Panel

B reports the seasonal projections associated with averaging the projections for the cor-

responding combinations of areas. Averages are either equally weighted across regions

(denoted as “Equal” in the “Weighting” column) or weighted in proportion to their sur-

face area (denoted as “Area” in the “Weighting” column).
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ALA 

CGI 

WNA 

ENA 
CAR CAM 

CNA 

Figure A1: Geographical areas for IPCC temperature projections

Notes - This figure provides the geographical areas for which Christensen et al. (2007) provided
a projection for the temperature change over the next 100 years. For the exact coordinates of
each area refer to Table A5.
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Table A5: IPCC projections

Panel A: Area projections
Abbr. Approx. area Coordinates Surface Win. Spr. Sum. Fall
ALA Alaska 60N,170W 1298469 11.34 6.30 4.32 8.10

to 72N,103W
CGI Canada, 50N,103W 4100546 10.62 6.84 5.04 7.20

Greenland to 85N,10W
WNA East US, 30N,50W 6098707 6.48 5.58 6.84 5.58

Canada to 75N,100W
CNA Midwest 30N,103W 1310340 6.30 5.94 7.38 6.30

to 50N,85W
ENA East US 25N,85W 3283483 6.84 6.30 5.94 6.30

to 50N,50W
CAM Central 10N,116W 3004622 4.68 6.48 6.12 5.76

America to 30N, 83W
CAR Caribbean 10N,85W 1725932 3.78 3.96 3.60 3.60

to 25N,60W

Panel B: Country aggregate projections
Weighting Winter Spring Summer Fall

WNA+CNA+ENA Equal 6.54 5.94 6.72 6.06
WNA+CNA+ENA+ALA Equal 7.74 6.03 6.12 6.57
CNA+ENA Equal 6.57 6.12 6.66 6.30
CNA+ENA+ALA Equal 8.16 6.18 5.88 6.90
All Equal 7.15 5.91 5.61 6.12
WNA+CNA+ENA Area 6.57 5.85 6.63 5.89
WNA+CNA+ENA+ALA Area 7.09 5.89 6.38 6.13
CNA+ENA Area 6.69 6.20 6.35 6.30
CNA+ENA+ALA Area 7.71 6.22 5.90 6.70
All Area 7.16 6.00 5.85 6.08

Notes: Panel A reports the projections of regional temperature increases by Christensen et al.
(2007). The column “Abbr.” denotes the abbreviations used by Christensen et al. (2007); the
column “Approx. area” denotes the approximate geographical area associated with each regional
forecast; the column “Coordinates” denotes the geographical coordinates of each area; the col-
umn “Surface” denotes the surface of the area in square miles; the columns “Winter,” “Spring,”
“Summer,” and “Fall” denote the projected temperature increases over the next 100 years in
degrees Fahrenheit. Panel B reports the projections aggregated to the country level. The first
column reports the areas that are being aggregated; the column “Weighting” reports whether the
areas are equally or area weighted; the right-most four columns report the forecasted seasonal
temperature changes over the next 100 years for each season. Seasons are defined according to
the meteorological convention.
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