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Abstract
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1 Introduction

This paper takes advantage of rich microdata on Colombian manufacturing es-
tablishments to decompose growth over an establishment’s life cycle into that
attributable to three fundamental sources of growth: physical productivity, price
effects and input costs. Price effects capture both demand shocks (e.g. quality
build-up) and idiosyncratic distortions, which we plan to further decompose by
focusing on distortions that are conditional on either size or sector.
The growing availability of detailed firm and establishment level data has

allowed researchers to dig into the empirical micro foundations behind slug-
gish aggregate growth in many low- and middle-income economies. A recent
strand of the literature has focused on how businesses grow over their life cycle,
uncovering patterns that suggest that less developed economies are character-
ized by business post-entry growth slower than that of startups in developed
economies (Hsieh and Klenow, 2014; Buera and Fattal, 2014). These studies
argue that slow post-entry growth can be attributed to slow growth of physi-
cal productivity– related to poor market selection or poor innovation—, in turn
caused by poor market institutions that discourage, or fail to encourage, invest-
ments in productivity enhancement and healthy market selection.
Recent work by Foster, Haltiwanger and Syverson (2016), however, argues

that a startup’s ability to increase its demand may be even more important
to ensure rapid growth than its ability to increase the physical effi ciency of its
production process. They observe that, for US manufacturers in a restricted set
of sectors, employment growth from birth to maturity closely tracks demand
growth (defined as growth in prices not explained by changes in physical pro-
ductivity) but not growth in physical productivity (TFPQ). However, for the US
the rich data on individual prices necessary to decompose profitability into its
TFPQ and price components are only available for a restricted set of industries
characterized by product homogeneity.
Establishment level data for the manufacturing sector in Colombia is uniquely

rich. Since at least 1982, the Annual Manufacturing Survey has been record-
ing information on all individual products produced by an establishment and
all individual material inputs used by the establishment. Establishment level
prices can be constructed using this information. Moreover, establishments in
the survey (all manufacturing establishments, except for the micro ones) can be
followed longitudinally, and the age of the establishment from the time of the
start of its operations is reported.
We take advantage of these unique data to assess the relative importance of

different plant-level “fundamentals”as determinants of growth over the life cycle
of startups in Colombia’s manufacturing industry. On the side of fundamentals
we can measure TFPQ, output prices, and input prices at the plant level, an
unusually rich set of measured fundamentals.
Our analysis contributes to the growing literature on post-entry growth by

expanding the set of plant-level determinants of growth to which attention is
paid, from the traditional focus on physical productivity to a more comprehen-
sive view that recognizes the importance of demand, including building one’s
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client base, introducing new products and emphasizing product quality and
differentiation in existing product lines. In this aspect, we build on the ideas
recently proposed by Foster et al. (2016), but expand the empirical reach by en-
riching the characterization of fundamentals, and widening the sectoral scope to
all manufacturing sectors. This new focus on demand, as opposed to productiv-
ity, has potential crucial implications for policies aimed at fostering high growth
entrepreneurship, where much of the focus has been on boosting effi ciency rather
than helping startups build their client base.
Following a life-cycle approach, we show that an average establishment in

our sample doubles its birth level of employment by around age 12, and mul-
tiplies it by four by the time it is 25. Post-entry growth is faster in the most
recent decade than in the 1980s. The two decades are separated by a wave
of reforms that arguably transformed institutions in the country. But, there
is wide dispersion in the patterns of growth across firms, with average growth
driven by a small fraction of rapidly growing businesses. Post-entry growth in
other outcomes—output, revenues, capital stock, scope, skill composition—follows
overall patterns consistent with those just described, though with important
quantitative differences. Output, revenues, and in particular the capital stock
grow much more rapidly over the life cycle than employment does, while the
magnitudes of growth in skill composition and number of products are similar
to those observed in employment.
The paper proceeds as follows. We first explain the data used, in section 3.

We then characterize growth over establishments’life cycle in terms of employ-
ment and other outcomes (Section 4). Section 2 then presents our conceptual
approach to decompose outcome growth into fundamental sources. The ap-
proach we use to measure fundamentals is described in section 5. Results for
our growth decomposition are presented in section 6. Section concludes 7.

2 Decomposing growth into fundamental sources

We start with a very simple static model of firm optimal behavior given firm
fundamentals, to derive the relationship that should be observed between size
growth and growth in fundamentals as a firm ages. Those fundamentals are
the productivity of the firm’s productive process (often termed TFPQ in the
literature), the unit costs of its inputs, and a residual "price effect" that cap-
tures how much the firm is able to charge for a unit of product. Idiosyncratic
distortions to the decisions of the firm, stemming for instance from regulations,
will be for the time being subsumed in the generic price effects and the input
costs, depending on their origin. The firm chooses its size optimally given these
fundamentals. As a result, growth over its life cycle will be driven by growth
in these different fundamentals. For consistency with the literature on business
dynamics, we refer to a business as a “firm”, even though the unit of observation
for our empirical work is an establishment.
Though for simplicity we take growth of fundamentals as exogenous in de-

scribing this conceptual framework, it is clear that the firm may make invest-
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ments to modify both the physical productivity of its production process and
the prices the firm is able to charge at given productivity levels. The firm’s
efforts to increase prices may include investments in building its client base
(Foster et al., 2014), or in adding new products or improving the quality of its
pre-existing product lines (Atkeson and Burstein, 2010; Acemoglu et al., 2014).
At a later stage in this project, we will also investigate such firm investments—
some of which are observed in the data—and to what extent the actual evolution
of fundamentals and, ultimately, of firm size can be attributed to them.
Consider a monopolistic competitor that produces output Qit using a com-

posite input Xit to maximize its profits, with technology

Qit = AitX
γ (1)

Ait is the firm’s physical total factor productivity, to which we will refer as
TFPQ, and γ the returns to scale parameter. The firm is assumed to face a
downward sloping (inverse) demand function given by

Pit = DitQ
−ε
it (2)

where Dit is the residual price effect. This residual price effect reflects both
idiosyncratic demand for the plant’s products, dit, and distortions to profitabil-
ity: Dit = dit (1− τRi), where τRi is a firm-specific revenue distortion.
The firm maximizes its profits, taking as given Ait, Dit, and potentially

idiosyncratic unit costs of the composite input, Cit. Unit input costs faced by
the firm may also be affected by firm-specific input price distortions: Cit =
cit (1 + τ ci). The setup just described closely follows assumptions in Hsieh and
Klenow’s analyses of manufacturing plants (2009, 2014), except that we relax
the assumption of constant returns to scale, and allow unit input costs to vary
across plants even in the absence of distortions.

Profit maximization yields optimal input demand ofXit =
(
γ(1−ε)DitA1−ε

it

Cit

) 1
1−γ(1−ε)

.

Denoting by Zi0 the value at birth of variable Z for firm i, growth over the life
cycle of the firm can be attributed to growth in the different fundamentals:

Xit

Xi0
=

(
Dit

Di0

)δ1 (Ait
Ai0

)δ2 (Cit
Ci0

)δ3
(3)

where δ1 = 1
1−γ(1−ε) , δ2 = (1− ε) δ2 and δ3 = −δ1. These parameters are

constant across firms that produce with the same technoloy and face the same
demand elasticity. Equation (3) decomposes growth in (log) firm size into the
contribution of (log) fundamentals, and is one of the key focuses of this paper.
One can easily derive analogous decompositions in terms of employment

or output, as opposed to the composite input X, and explore the role of the
specific dimension of input prices that is observed in the data: the price of
material inputs. In particular:

Lit
Li0

= λit

(
Dit

Di0

)λ1 (Ait
Ai0

)λ2 ( pmit

pmi0

)λ2
(4)
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where pmit is price of material inputs (measurable at the plant level using in-
formation from the survey); λ1 = 1

1−γ(1−ε) ; λ2 = (1− ε)λ1; λ3 = −φ (1− ε)λ1;
and λit is a residual capturing cross-plant dispersion in the evolution of wages
and capital unit costs.1 . Similarly:

Qit
Qi0

= χit

(
Dit

Di0

)γλ1 (Ait
Ai0

)1+γλ2 ( pmit

pmi0

)γλ2
(5)

Hsieh and Klenow (2014) have pioneered the empirical exploration of growth
over a business’life cycle, showing that average size growth over the life cycle of
a manufacturing establishment varies considerably between the US, India and
Mexico, with US plants growing much more dynamically than those in Mexico
or India, and have attributed those differences to variability in idiosycratic dis-
tortions across those economies. We aim to establish a series of facts related to
those uncovered by Hsieh and Klenow: 1) The degree of dispersion in growth
across plants. 2) The degree to which size increases over a firm’s life cycle are
attributable to increases in physical productivity, as compared to input costs
and price factors. 3) The degree to which dispersion in size growth across plants
can be attributed to dispersion in growth in each of these fundamentals. In a
companion paper (Eslava and Haltiwanger, 2016) we attempt to uncover the
degree to which dispersion in input costs and demand shocks is attributable to
distortions from a specific regulation, taking advantage of cross-sectional vari-
ability in the dispersion of import tariffs that affect a plant’s inputs and those
that affect its products.
We also investigate how such dispersion in the growth of fundamentals re-

lates to dispersion in the average product of inputs, as well as in TFPR, two
concepts highlighted in Hsieh and Klenow’s work. TFPR has been defined
by Foster et al (2010) as TFPRit = PitAit. Though in Hsieh and Klenow’s
original work TFPR and the average product of inputs are equivalent, under
the generalized production function we are assuming they are not, as shown
by Haltiwanger (2016). In particular, and denoting the firm’s revenue by Rit,
Rit
Xit

=
PitAitX

γ
it

Xit
. It is clear that RitXit

= TFPRit only if γ = 1. Under our current

assumptions, further, one can show that, in the optimum Rit
Xit

= Cit
γ(1−ε) while

TFPRit =

[
CεitD

1+εγ
it

(γ(1−ε)A1+εγ
it )

ε

] 1
1−γ(1−ε)

. Therefore, while dispersion in revenue per

input is driven solely by dispersion in input costs, and muted when such costs
are homogeneous across plants, dispersion in TFPR responds to dispersion not
only in unit costs but also in TFPQ and the residual price effect.

3 Data

We use data from the Colombian Annual Manufacturing Survey (AMS) from
1982 to 2012. The survey, collected by the Colombian offi cial statistical bureau

1λit =
(
ωit
ωi0

) 1
1−ε−(α+φ)

(
rit
ri0

)−α
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DANE, covers all manufacturing establishments belonging to firms that own
at least one plant with 10 or more employees, or those with production value
exceeding a level close to US$100,000. The unit of observation in the survey
is the establishment. An establishment is a specific physical location where
production occurs.
Each establishment is assigned a unique ID that allows us to follow it over

time. Since a plant’s ID is not modified with changes in ownership, such changes
are not mistakenly identified as births and deaths. Plant IDs in the survey were
modified in 1992 and 1993. In theory, there is a one-to-one mapping between
the old and the new codification. We use the offi cial correspondence that maps
one into the other to follow establishments over that period.2

Surveyed establishments are asked to report their level of production and
sales, as well as their use of employment and other inputs, and their purchases
of fixed assets. Sector ID’s are also reported, at the 3-digit level of the ISIC
revision 2 classification.3 Since 2004, respondents are also asked about their
investments in innovation, with bi-annual frequency.
A unique feature of the AMS, crucial for our ability to decompose fundamen-

tal sources of growth, is that inputs and products are reported at a great level of
detail. Plants report separately each input used and product produced, at a level
of disaggregation corresponding to seven digits of the ISIC classification (close
to six-digits in the Harmonized System). For each of these individual inputs
and products, plants report separately quantities and values used or produced,
so that plant-specific prices can be computed for both inputs and outputs. We
thus directly observe idiosyncratic input costs. Furthermore, by taking advan-
tage of plant-specific prices, we can use produce measures of productivity based
on physical output, and also estimate demand shocks. Details on how we go
about these estimations are provided below.
Importantly for this study, the plant’s initial year of operation is also recorded—

again, unaffected by changes in ownership—. We use that information to cal-
culate an establishment’s age in each year of our sample. Though we can only
follow establishments from the time of entry into the survey, we can determine
their actual age, and follow a subsample from birth. We denominate tat sub-
sample, composed of the establishments we observe from birth, as the life cycle
sample.
With respect to studies that rely on data from economic censuses, one clear

limitation of our approach is that we only observe a fraction of establishments
from birth, and that fraction is selected: corresponds to establishments born
at or beyond a given size. The upside is that we can follow each establishment

2 It is the case, however, that we see higher "exit rates" in 1991 compared to other years,
and also higher entry in 1993. DANE does report having undertaken efforts to improve actual
coverage in 1992, which may explain higher entry in 1993. But, it is also likely that the IDs
used to map one codification into the others were not fully recorded, leading to failure to
follow some continuing plants over that period. Even in those cases, however, the "initial year
of operation" variable correctly indicates the actual birth year for each observation.

3The ISIC classification in the survey changed from revision 2 to revision 3 over our period
of observation. The three-digit level of disaggregation of revision 2 is the level at which we
are able to consistently assign sector codes over the period.
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longitudinally, and do it at higher frequencies (annual, rather that inter-census).
We attempt to deal with selection biases using a variety of approaches, from
controlling for initial sizes to contrasting our findings for plants observed from
birth to analogous figures for all of the other plants in the manufacturing survey.
It is important to highlight, also, that the Colombian manufacturing survey is
a census of all manufacturing non-micro establishments.

4 Growth over the life cycle

We start by characterizing "outcome" growth over the life cycle of a manufac-
turing establishment (the left hand side of our growth decomposition). We first
follow the recent literature, characterizing employment growth over the life cycle
of the establishments that we observe from birth. At the end of this section we
include other plant outcomes, such as production, skill composition, and scope.
Because of our interest on characterizing longitudinal patterns within plants,
our focus is on the sample of plants that we follow from birth, which we call the
"life cycle" sample.

4.1 Average life cycle growth

To characterize employment growth for the average establishment in our sample,
we estimate a full set of φage coeffi cients in equation:

Lit
Li0

= αt + αs +

age=20+∑
age=3

φagedage,i,t + εit (6)

where Lit
Li0

is the ratio between plant i′s employment level in year t and the level
at plant’s birth; dage,i,t is a dummy variable that takes the value of 1 if plant
i has age age in year t; and εit is an estimation error. We control for (three-
digit) sector effects and aggregate time effects. We define age as the difference
between the current year, t , and the year when the plant began its operations,
and define the plant’s employment level at birth Li0 as the average employment
it reported in ages 0 to 2. By averaging over the first few years in operation we
deal with measurement error coming from partial-year reporting (if the plant,
for instance, was in operation for only part of its initial year) or with fuzzy
definitions of a plant’s start date.
Figure 1 presents the coeffi cients associated with different ages in the esti-

mated equation (6). The average establishment in our life cycle sample doubles
its size by around age 12, and multiplies it by four by the time it reaches around
25 years. Estimation results for equation (6) are also shown in Table 1, though
only up to age 12 to keep the table manageable.
Average growth over the life cycle is driven by both within-plant growth for

surviving establishments and by exit. With healthy market selection, it should
be the less productive and also smaller plants that are exiting, driving average
size up for older ages. Figure 2 indicates that, indeed, the exiting businesses
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tend to have grown less than their surviving counterparts by the time they exit.
For any age, the dotted line in this figure represents Lit

Li0
for establishments

that will exit in the following period, while the dashed line shows the analogous
figure for establishments that continue to operate in the following age.
Figure 1 also shows the corresponding cross-sectional patterns. These are

calculated by dividing the average employment level of plants of a given age in
the overall sample (i.e. not only plants in our life cycle sample) by the average
size of plants at birth. The estimated growth dynamics are considerably damp-
ened in the cross sectional approach compared to the longitudinal one, which
hints at the importance of being able to follow individual units longitudinally.
Cross-sectional comparisons of cohorts, by contrast to our life cycle approach,
implicitly give more weight to plants born larger, which results in the dampened
cross-sectional dynamics observed in Figure 1.4

To give an idea of where these patterns fit in the international spectrum,
Figure 3 compares the cross sectional patterns with US cross sectional patterns,
calculating the two in an analogous manner. The US data comes from the
publicly available information in the Bureau of the Census’Business Dynamics
Database, which shows average size for given age categories. We focus solely on
statistics for the manufacturing sector and cut the Colombian data in analogous
categories for comparability. The period is limited to 2002-2012, which is the
time span for which we can assign age tags to all categories in the US data.
The growth speed of the average US establishment basically doubles that in

Colombia. For instance, employment in the 16-20 category more than doubles
that of the initial category in the US, while it is at about 1.5 times the initial
size for Colombia.5 This is consistent with results in Hsieh and Klenow (2014)
indicating that less developed economies are characterized by less dynamic post-
entry growth.6

Hsieh and Klenow (2009) and Buera and Fattal (2014) attribute such cross-
country differences to poor institutions in developing economies, that fail to
encourage investments in productivity and healthy market selection. Identifying
the actual role that specific institutions play is an interesting area of future

4Notice that

Lage

L0
=

N∑
i=1

Li,age

N∑
i=1

Li,0

=

N∑
i=1

Li,age
Li,0

∗ Li,0

N∑
i=1

Li,0

=
N∑
i=1

Li,age

Li,0

Li,0
N∑
i=1

Li,0

5Results for the cross sectional approach with the Colombian data in Figures 1 and 2 are
consistent. The corresponding lines look a little different between the two figures because of
the use of wider age bins in Figure 2.

6Though similar to Hsieh and Klenow’s, our numbers for the US are not identical to
theirs, even if we focused on the same year, because of several differences in the calculation.
We use data from the Business Dynamics Statistics, which directly records the age of an
establishment. It also records employment for establishments of all sizes. Meanwhile, Hsieh
and Klenow impute age based on previous appearance in Census, and use imputed rather than
observed employment for small businesses.
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research. Within-country changes in institutions, either across businesses or
over time (or both) offer a fruitful ground for such exploration, to the extent
that they keep constant other factors potentially influencing business dynamics,
from the macroeconomic environment to business culture.
Colombia, as many other countries in Latin America and around the globe,

undertook wide market-oriented reforms at the beginning of the 1990s. These
included unilateral trade openning, financial liberalization, and flexibilization of
labor regulations. Eslava et al (2004, 2013, 2010) present evidence that these
reforms did generate changes in business dynamics consistent with a reduction in
the distortions to business incentives : allocative effi ciency improved, the market
selection mechanism was enhanced, capital and labor adjustment became more
flexible (though in an apparently capital-biased way). We now ask whether
there are noticeable differences pre- vs. post-refom in the life cycle dynamics of
Colombian manufacturing plant described above.
Figure 4 depicts the results of allowing the coeffi cients of equation (6) to

vary between the pre- vs. post-reform periods. We define 1982-1992 as pre-
reform and 2002-2012 as post-reform. We leave out the years between 1993 and
2001 for two reasons: 1) It is not clear whether firms born just as the reforms
are being adopted behave in their first few years as pre-reform or post-reform
firms, which in tun also makes it hard to judge whether faster growth after a few
years should be attributed to a comparison to poor birth conditions. 2) Between
1997 and 2001, the country went through its deepest recession in 70 years. The
2002-2012 period could be described as one where the new regulatory approach
is consolidated and macroeconomic conditions are not that different from those
in the eighties.
For each of these two subperiods, we construct a life cycle sample of plants

observed from birth within the subperiod, so the maximum age in each case is
10 years. We pool the two samples, and run the regression

Lit
Li0

= αt + αs +

age=20+∑
age=1

φagedage,i,t +

age=20+∑
age=1

φagedage,i,t ∗ dpostt + εit (7)

where dpostt = 1 if t ∈ [2002, 2012] and dpostt = 0 otherwise. Results are
summarized in Figure 4.
Plants in the post-reform period multiplied their birth size by 1.5 by age 6,

reaching a maximum size of around 1.7 times their birth size in their first ten
years. By contrast, plants in the pre-reform don’t cross the 1.5 mark during
their first decade of operation. That is, consistent with theroetical arguments
implying slower growth of businesses in environments subject to more stringent
distortionary regulations, the average manufacturing establishment grows faster
in the post-reform period.
Figure 5 provides suggestive evidence that both improved market selection

and starker growth for survivors contributed to greater post-entry dynamism
after the reforms. Continuers’growth in the post reform is more marked than
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pre-reform, slightly but consistently. The gap between continuers and exiters is
also more marked in the more recent period.

4.2 Skewness

The analysis above describes the dynamics of growth for an average manufac-
turing establishment in our sample. But, how typical is the average business?
It has been well established that the answer is "not at all" in terms of busi-
ness size and also inter-anual growth (e.g. Haltiwanger, Jarmin and Miranda,
2013). How about life-cycle growth? How skewed is the distribution of life cycle
growth?
Figures 6 and 7 show different moments of the distribution of life-cycle

growth.7 The stark difference between median and mean patterns in Figure
6 (in log scale) highlights the fact that it is a minority of fast-growing plants
that drive mean growth. A plant in the 90th percentile grows five times as fast
as the median plant. Plants in the 10th percentile, meanwhile, shrink substan-
tially over their life cycle. Figure 7, meanwhile, points that the post-reform is
characterized by both faster growth in the 90th percentile, and less contraction
in the 10th percentile.
In summary, there is very wide dispersion around the average patterns of

growth described above. And, though the arguably more healthy market in-
stitutions that prevail in the decade of 2000 compared to twenty years early
are associated with more rapid business growth, there seems to be as much
dispersion in growth post-reform as there was in the 1980s.

4.3 Other plant outcomes over the life cycle

Figures 8 and 9 shows different measures of "outcome" growth over the life
cycle. Plants consolidate over their life cycle in all of the dimensions explored.
In terms of value of outputs and inputs, interestingly, employment is the slowest
dimension of outcome growth post-entry. Output and revenue both grow about
twice as fast as employment for the average plant. This is apparently driven by
much faster growth in the use of capital and materials than employment.
At the same time, the average plant becomes more sophisticated as it ages.

Over its first decade, it increases the number of 8-digit product categories in
which it produces by about 50%. Skill composition also improves in a similar
magnitude.

5 Measuring fundamentals

This section explains our approach to measuring the three fundamental dimen-
sions into which we then decompose output and input growth. A key feature
of our analysis is the availability of plant level prices, which we use to obtain
indicators of quantities produced, and in turn to estimate the physical effi ciency

7For each age the figures depict the respective moment of the distribution of Lit
Li0

.
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of production. We first explain our approach to constructing plant-level output
and input prices. Then, we describe our estimation of TFPQ and price effects,
using those plant level prices.

5.1 Plant-level prices

Tornqvist indices for the growth of prices of plant j at time t are constructed,

from its composite of products or materials h, as∆Pjt =

Hj∑
h=1

shj∆ ln(Phjt),where

Phjt is the price charged for product h, or paid for material h, by plant j in
year t. ∆ ln(Phjt) = lnPhjt − lnPhjt−1 and shj is the average share of h in the
basket of products (or materials) of plant j. After obtaining plant-level price
changes, the indices for the levels of output (or material) prices for each plant
j are constructed recursively as lnPjt = lnPijt−1 + ∆Pjt.
The price series for each plant is initialized at a given level Pj0, where

0 is the base year for plant j. We construct the base price for a plant as:

lnPj0 =

Hj∑
h=1

_
shj

(
lnPhj0 − lnPh0

)
, where year 0 is the first year in which the

plant is present in the survey. Notice that this approach takes advantage of
cross sectional variability across plants for any given product or input h. In
the base year, the price index will be normalized one for the average producer
(user) of product h (input h), but will capture the dispersion of other plants for
the same product (input) around that average.
Our plant-level input price indices measure unit costs for materials, one of

the inputs in the production function. They are, thus, one of the components
in growth decomposition (3). TFPQ and demand shocks are other key compo-
nents. We now explain our approach to measuring them.

5.2 Physical productivity

We use our plant-level output prices to construct physical quantities of out-
put, by deflating the nominal output by the plant-level price index. Physical
quantities of materials are similarly constructed using the plant-level materials
price index as deflator. With these elements in hand, and direct reports of the
number of employees and the stock of physical capital, we estimate TFPQ from
the (log) residual of production function (1) (repeated here)

Qit = AitX
γ
it

where X = K
α
γ

it L
β
γ

itM
φ
γ

it . A usual concern in the literature is that we observe
values, rather than quantities, of output and inputs, so that the residual from
estimating the (revenue) production function cannot be interpreted as Ait (or
TFPQ). The fact that we use plant-level prices to deflate output and materials
deals with this concern.
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We estimate the production function for each two-digit sector, using proxy
methods. In particular, we follow the approach proposed by Ackerberg, Caves
and Frazer (2015, ACF henceforth), combining proxy-methods (Levinsohn-Petrin)
with a control function based on GMM insights. Our key identifying assumption
is that innovations to productivity are orthogonal to the current capital stock
and labor, and to materials lagged one period. Labor market regulations in the
country create barriers to immediate employment adjustment, which is why we
assume labor to be (at least semi-) fixed.8

We also try variants of this approach proposed by De Loecker et al (2015),
augmenting the control function to include plant-level prices. Both approaches
yield very similar results in our case, so we present results using the ACF ap-
proach.9 We have also examined the robustness of our results to other methods
for determining factor elasticities, including using a cost share approach and in-
cluding in the control functions other variables related to firm behavior (see De
Loecker and Warzynski, 2012). We plan to further examine robustness to using
Ghandi, Navarro and Rivers (2013) approach to the estimation of production
functions. So far, results are broadly consistent as long as estimated returns to
scale are not markedly decreasing.
Table 3 presents the results of our estimation of the production function,

carried at the two-digit level of ISIC revision 2 (with descriptive statistics pre-
sented in Table 2). We estimate returns to scale approximately constant, and
a coeffi cient for labor that tends to double that of capital. In most sectors, the
coeffi cient for materials is estimated to be above 0.5.

5.3 Price effects

Our (log) residual price effect, lnDit, is the residual from estimating the demand
function (2)

lnPit = α− ε lnQit +$it (8)

That is, $it = lnDit. Estimating (8) by OLS would yield biased results,
to the extent that Q is correlated with the residual price for reasons beyond
demand shocks. We thus estimate this demand function using IV methods. In
particular, we use the physical productivity shock Aitas an instrument for the
plant’s output, as in Eslava et al (2013) and Foster et al (2016). By using Ait
as an instrument we focus on pure demand: the variability that is orthogonal to
supply side shocks. The estimate that we recover for εit is an unbiased estimate

8 In other words, materials are declared as a free input while labor is considered a semi-fixed
one. Declaring labor, besides materials, as a free input, yields somewhat unplausible results
for some sectors. Under that assumption, returns to scale are frequently (i.e. for several
sectors and some periods of estimation) estimated to be increasing, and the coeffi cient for
labor shoots up. Such implausible results support our prior that treating labor as a free input
is not appropriate in the context in which we carry our estimation.

9Unlike De Loecker et al (2015), we deflate not only output but also materials using plant-
level deflators. This helps us deal with the biases that they address by including output prices
in their control function.
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of the ability of the firm to charge a different price when observing a shock to
its sold quantity that is unrelated to the effi ciency of its production process.
The lower panel of Table 2 presents basic descriptive statistics for TFPQ

and D. The degree of dispersion is similar (on a log basis) for both fundamen-
tals. Table 4 characterizes our estimates of TFPQ and Dit in terms of their
correlations with other variables. As found by Eslava et al. (2013) for an earlier
period, TFPQ is negatively correlated with output prices, which is intuitive to
the extent that more effi cient production allows charging lower prices. Both
TFPQ and D are positively correlated with plant size (captured in the table by
output). Note also that TFPQ is highly correlated with TFPR . By construc-
tion, our estimate for logDit captures only the part of the price effect that is
uncorrelated with TFPQ, so the correlation between TFPQ and D is zero.

Price effects capture a variety of relevant determinants of firm growth. Prod-
uct quality is a particularly interesting dimension, but it is mingled with dis-
tortions from either regulations or other fronts in our D measure. Moreover, it
is diffi cult to think of quality improvements as orthogonal to TFPQ. Improving
quality likely requires efforts that are costly in terms of effi ciency. We thus
recover an estimate of D that does not eliminate the part of price effects cor-
related with TFPQ. To this end, we begin by noticing that one can obtain a
residual Zit from the revenue function:

Zit =
Rit

X
γ(1−ε)
it

=
PitQit(

K
α
γ

it L
β
γ

itM
φ
γ

it

)γ(1−ε)
it

and that Zit = A1−εit Dit. We thus obtain Zit using observed Rit and Xit

and our estimates of α, β, φ, and ε, and then recover Dcorr
it = Zit

A1−ε
it

, where we

use the notation Dcorr to highlight the fact that this measure of the price effect
does not eliminate the correlation with TFPQ. Crucially, we have previously
obtained unbiased estimates of factor and demand elasticities, and can now use
them to derive an estimate of the demand shock that is not restricted to the
part of demand uncorrelated with productive efforts.
Table 4 also displays the correlations between Dcorr

it and our other estimates
of fundamentals. Dcorr

it is highly correlated withDit. Its correlation with TFPQ,
as expected, is negative.

(TENTATIVE) Khandelwal (2010) defines quality as the price vari-
ation not explained by quantities within narrowly defined product categories
and years. We plan to follow this approach by calculating quality as the varia-
tion of Dcorr

it that is left after considering firm-product-year effects. To pursue
this strategy we will re-estimate our production and demand functions at the
plant-product level and obtain:

Dq
ijt = Dcorr

ijt − σijt
where σijt is a plant-product-time fixed effect.
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6 Results: Decomposing growth into fundamen-
tal sources

We now decompose output and employment growth as characterized in section
4, into that associated with different fundamental sources: TFPQ, price effects,
and input prices (equation 3). The distributions of the evolution of plant fun-
damentals over the life cycle are displayed in Figure 9, which also shows output
prices. As we did before for employment, for a given variable Z each figure
depicts statistics for Zit

Zi0
, on a log scale.

Average TFPQ growth is quite anemic compared to that of price effects.
And, both the mean and the median of input prices aer basically static over a
plant’s life. Improvements in the plant’s ability to negotiate input prices as it
ages are either null, or eroded by possible increases in the quality (and therefore
cost) of inputs used.
There is also considerable dispersion in the growth of both TFPQ and price

effects. The 90th-10th gap, however, is much wider (on a log basis) for the
price effect. Moreover, even the 10th percentile grows modestly in the case of
the price effect, while TFPQ falls markedly for the 10th percentile. Survival is
clearly made possible, for this worst performing plants, by growth in prices.
Figure 10 depicts, directly, our output growth decomposition (on a log scale):

Qit
Qi0

= χit

(
Dit

Di0

)γλ1 (Ait
Ai0

)1+γλ2 ( pmit

pmi0

)γλ2
(9)

where, as explained in section 2 λ1 = 1
1−γ(1−ε) ; λ2 = (1− ε)λ1; λ3 =

−φ (1− ε)λ1; and where we are using our estimates of γ, ε and φ to construct
each of the terms of the decomposition. χit is a residual capturing cross-plant
dispersion in the evolution of wages and capital unit costs.

The grey line in Figuer 10 corresponds to
(
Ait
Ai0

)1+γλ2
, while the solid dashed

line adds the contribution of materials prices by depicting
(
Ait
Ai0

)1+γλ2 (
pmit
pmi0

)γλ2
,

and the solid black line further adds the contribution of price effects. The dot-
ted line represents outcome growth, LitLi0

. The difference between this dotted line
and the solid black line is the contribution of unmeasured factors, χit. Each
panel of the figure constructs the decomposition for a given section of the dis-
tribution of plant outcome growth. The upper left panel depicts, for each age,
the decomposition for the average Lit

Li0
plant. The upper right panel represents

plants in the lowest decile of LitLi0
, and the lower left and right panels represent,

respectively, the median and the highest decile.
All three fundamental dimensions explored in these figures play a role in

explaining output growth, as seen, for instance, in the fact that slow (rapid)
growth plants also show particularly slow (rapid) growth in fundamentals, in
particular TFPQ and price effects. Plants with growth in the lowest decile of
life cycle output growth, which in fact perceive a consistent decline in output
, exhibit a negative contribution of TFPQ to growth further deepened by a
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contraction of the price effect. In turn, rapid growers in the 90th percentile of
growth exhibit positive and dynamic contributions of all three fundamentals,
and their distance with respect to slow and average performers is particularly
marked in the price effect dimension.
These results point at a crucial role of price effects to explain extraordinary

growth, with contributions of TFPQ and input prices less important in magni-
tude but with the expected sign. Table 5 further supports this interpretation.
Even after controlling for (three-digit) sector and year effects, which take care
of distortions at these levels, price effects contribute the most to the variability
of output growth. However, all three fundamentals, especially TFPQ and price
effects explain a sizable fraction of the variability in output growth over the life
cycle. All of them together explain over 70% of the variability in output growth.
This finding is in line with Foster et al’s (2016) argument that consolidating a
solid client basis is more central to post-entry business growth than physical
effi ciency gains, and their consistent results for selected US
Figure 11 and the lower panel of Table 5 replicate the decomposition using

employment growth, LitLi0
, rather than output growth as a dependent variable.

The three fundamentals measured here explain much less of the overall vari-
ability in emploment growth compared to their contribution towards explaining
output growth: the overall R2 falls to 0.425 compared to 0.737 for employ-
ment. Adjustment costs likely play an important role in the relatively highly
regulated Colombian labor market. Moreover, employment growth tracks even
more closely price effects relative to TFPQ. In fact, the contribution of TFPQ
to employment growth is negligible
Figure 12 explores pre- vs. post-reform differences in our results for the

decomposition. The importance of price effects is particularly stark in the post-
reform period.

7 Conclusion
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Table 1. Employment growth over the life cycle (showing coefficients only up to age 12)

L_t/L_0. Life cycle sample L_t. Full sample L_t/L_0 . Life cycle sample. Pre-
vs. post-reform

d_age=0-2 36.33***
(2.667)

d_age=3 1.086*** 38.81*** 1.010***
(0.260) (2.991) (0.0649)

d_age=4 1.267*** 40.00*** 1.121***
(0.278) (2.882) (0.0737)

d_age=5 1.362*** 41.39*** 1.169***
(0.280) (2.839) (0.0750)

d_age=6 1.466*** 42.53*** 1.232***
(0.281) (2.812) (0.0763)

d_age=7 1.606*** 43.94*** 1.341***
(0.282) (2.791) (0.0787)

d_age=8 1.718*** 45.04*** 1.407***
(0.284) (2.768) (0.0820)

d_age=9 1.806*** 47.29*** 1.344***
(0.285) (2.768) (0.0888)

d_age=10 1.896*** 49.00*** 1.195***
(0.287) (2.764) (0.105)

d_age=11 1.957*** 51.19***
(0.289) (2.762)

d_age=12 2.043*** 53.30***
(0.291) (2.765)

pos*d_age=3 0.0538
(0.0796)

pos*d_age=4 0.00937
(0.0853)

pos*d_age=5 0.124
(0.0929)

pos*d_age=6 0.189*
(0.109)

pos*d_age=7 0.175
(0.116)

pos*d_age=8 0.209*
(0.124)

pos*d_age=9 0.301**
(0.138)

pos*d_age=10 0.247
(0.213)

Observations 38,345 9,727
R-squared 0.237 0.649
Effects Year and sector Year and sector Year and sector
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Figure 1: Employment over the life cycle of Colombian 
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Table 2: Descriptive statistics

Mean SD

Ln Output 10.696 1.744

Ln Revenue 11.875 1.642

Employment 59.201 118.642

Ln Employment 3.353 1.112

Ln Capital 10.223 1.971

Ln Input prices ‐0.291 0.676

Ln Output prices ‐0.045 0.686

Ln TFPQ 2.421 0.986

Ln D ‐0.037 1.055

N 40,087



Table 3: Estimated gross output production function

Sector Ln(L) Ln(K) Ln(MQ)
Returns to 

scale αL/αK

Overall 0.327 0.166 0.549 1.043 1.970
31 0.319 0.146 0.639 1.104 2.185
32 0.269 0.134 0.575 0.978 2.008
33 0.250 0.080 0.668 0.998 3.125
34 0.613 0.252 0.214 1.080 2.433
35 0.411 0.214 0.471 1.097 1.921
36 0.481 0.242 0.346 1.070 1.988
37 0.525 0.182 0.463 1.170 2.885
38 0.289 0.099 0.647 1.035 2.919
39 0.434 0.176 0.408 1.017 2.466

*Materials as free input



Table 4: Correlation between plant fundamentals, output and 
revenue. 

Ln TFPQ Ln D Ln Dcorr Ln Input 
Price

Ln 
Output 
price

Ln 
Output

Ln TFPQ 1.000 0.000 ‐0.117 0.12 ‐0.611 0.287

Ln D 0.000 1.000 0.591 0.06 0.180 0.887

Ln Dcorr ‐0.117 0.591 1.000 ‐0.094 0.022 0.581

Ln Input Price  0.12 0.06 ‐0.094 1.00 0.15 ‐0.05

Ln Output Price ‐0.611 0.180 0.022 0.15 1.000 ‐0.295

Ln Output  0.287 0.887 0.581 ‐0.05 ‐0.295 1.000
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A: Dependent variable: Ln (Output_it/Output_i0)

TFPQi_t/TFPQ_i0 0.647*** 0.659*** 0.684*** 0.695***
(0.00791) (0.00790) (0.00467) (0.00462)

D_it/D_i0 1.115*** 1.119*** 1.136*** 1.139***
(0.00538) (0.00538) (0.00427) (0.00422)

pm_it/pm_i0 -0.139*** -0.122*** -0.485*** -0.477***
(0.0135) (0.0135) (0.00743) (0.00737)

N 40,718 40,718 38,065 38,065 40,718 40,718 40,272 40,272 37,503 37,503
R-squared 0.038 0.051 0.186 0.202 0.532 0.540 0.043 0.055 0.726 0.737
Sector FE No Yes No Yes No Yes No Yes No No
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Panel B: Dependent variable: Ln (L_it/L_i0)
TFPQi_t/TFPQ_i0 -0.131*** -0.129*** -0.157*** -0.155***

(0.00651) (0.00652) (0.00521) (0.00519)
D_it/D_i0 0.698*** 0.704*** 0.725*** 0.730***

(0.00464) (0.00462) (0.00475) (0.00473)
pm_it/pm_i0 -0.00450 0.0110 -0.0600*** -0.0478***

(0.00979) (0.00984) (0.00828) (0.00827)

Observations 42,234 42,234 37,938 37,938 40,604 40,604 42,234 42,234 37,352 37,352
R-squared 0.030 0.043 0.042 0.055 0.377 0.391 0.032 0.044 0.410 0.425
Sector FE No Yes No Yes No Yes No Yes No No
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Figure 11: Contribution of TFPQ, input prices and Price effects
to employment growth by age
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