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Abstract1 
 

Using data for all 2,454 municipalities of Mexico for the period 1980-2010, this 
paper analyzes the relationship between exposure to extreme temperatures and 
precipitation and death, as well as the relationship between severe weather and 
agricultural income and crop production in the country. It is found that extreme 
heat increases mortality, while the health effect of extreme cold is generally 
trivial. Precipitation extremes seem to affect the agricultural system, but their 
impact on mortality is ambiguous. More specifically, exchanging one day with a 
temperature of 16-18 °C for one day with temperatures higher than 30 °C 
increases the crude mortality rate by 0.15 percentage points, a result robust to 
several model specifications. It is also found that the extreme heat effect on death 
is significantly more acute in rural regions, leading to increases of up to 0.2 
percentage points vis-à-vis a 0.07-point increase in urban areas. The timing of 
climate extremes is relevant: if a weather shock takes place during the agricultural 
growing season, the effects on mortality and agricultural output, productivity, 
prices, and crop yields are large and significant, but not so if such shocks occur 
during the non-growing season.  
 
JEL classifications: I12, Q12, Q51, Q54   
Keywords: Weather shocks, Climate extremes, Mortality, Agricultural income, 
Mexico 
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1. Introduction 
 
The mechanisms through which weather impacts human welfare are complex and rarely linear. 

In addition, they often encompass a wide variety of factors ranging from geographical location, 

economic development, settlement patterns and behavioral adaptation to intra-seasonal 

acclimatization, demographic characteristics, urbanization, and environmental pollutants. 

Inherent features of the developing world make people residing in industrializing regions more 

exposed to the negative impacts of weather than their developed-world counterparts. On average, 

people in developing countries spend more time outdoors (Basu and Samet, 2002), whether at 

their workplace, producing goods for their household’s own use and maintenance, commuting, or 

even carrying out activities to meet biological needs such as eating, sleeping, and relaxing. Even 

indoors, households in developing countries are more likely to lack air conditioning or display 

other features providing insulation from extreme weather (Rothman and Greenland, 1998).  

In developing settings specifically, the power of weather can be generally understood 

through two specific types of channels. One is direct: weather impacts human physiology 

through thermal stress and changes in metabolic rates, as well as increased incidence of diseases 

caused or spread by severe climatic conditions. In an extreme situation, these negative impacts 

may ultimately lead to death. In fact, the effect of extreme weather on mortality is a public health 

threat of considerable magnitude: even though economic (including insured) disaster losses 

associated with climate and geophysical events are higher in developed countries, fatality rates 

are higher in developing countries. During the period from 1970 to 2008, over 95 percent of 

deaths from inclement weather occurred in developing countries (IPCC, 2012.)  

Substantial epidemiological evidence documents a strong relation between severe 

weather and morbidity and mortality. The body adapts thermally to survive in drastic 

temperature environments, typically through thermoregulatory control mechanisms, such as 

shivering, arteriovenous shunt vasoconstriction, sweating and precapillary vasodilation in cold 

and hot environments, respectively. But these physiological processes are only effective within 

certain limits. Weather can be so extreme that such adjustments fail to balance body and ambient 

temperature, which in turn leads to strokes, hypothermia and hyperthermia, and other conditions 

that may be fatal.  

Many studies focusing on both industrial and developing countries have consistently 

shown that extreme heat is a natural hazard that can have a pronounced effect on human 
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wellbeing. This relationship has been considered relevant to public health for millennia2 and 

empirically researched as early as the 1930s: in a classic study, Gover (1938) reports excess 

deaths associated with elevated ambient temperature exposure in 86 U.S. cities from 1925 to 

1937. Studies of army recruits published in the 1940s (Schickele, 1947) and 1950s (Stallones, 

Gauld and Dodge, 1957) also underscore an association between ambient heat exposure and 

death. More recently, Hajat, O’Connor and Kosatsky (2010) observe that in Europe, increases in 

emergency hospital admissions among individuals with respiratory diseases have been noted 

during hot weather, while in studies from the United States, heat-related increases were noted in 

admissions for heart disease, acute myocardial infarction, and congestive heart failure. Using 

district-level data for India, Burgess et al. (2011) show that hot days and deficient rainfall cause 

large increases in mortality within a year of their occurrence in rural regions. Basu and Samet 

(2002) and Kovats and Hajat (2008) present a general review of the literature on the effects of 

hot temperature on mortality rates. 

Evidence is also robust for cold climate. Deschênes and Moretti (2009) estimate that the 

aggregate effect of cold weather on mortality is quantitatively large, the number of annual deaths 

attributable to cold temperature being equivalent to 0.8 percent of total deaths in the United 

States. This effect is even larger in low-income areas. Hashizume et al. (2009) characterize the 

daily temperature-mortality relationship in rural Bangladesh and find that for the period between 

1994 and 2002, a 1°C decrease in mean temperature was associated with a 3.2 percent (95 

percent confidence interval: 0.9–5.5) increase in mortality, with deaths resulting from perinatal 

causes sharply increasing with low temperatures. In an international study of temperature and 

weather in urban areas using data from 12 cities in developing countries, including Mexico City 

and Monterrey, McMichael et al. (2008) find a U-shaped temperature-mortality relationship, 

with significant death rate increases at lower temperatures. Analitis et al. (2008) study the short-

term effects of cold weather on mortality in 15 European cities and find that a 1°C decrease in 

temperature was associated with a 1.3 percent increase in the daily number of total natural deaths 

and increases of 1.2 percent, 1.7 percent and 3.3 percent in cerebrovascular, cardiovascular and 

                                                           
2 Already in Περί Αέρων, Υδάτων, Τόπων (On Airs, Waters, Places), a fifth-century B.C. medical treatise ascribed 
to Hippocrates, the author deals with the effects of climate on health. He argues that “whoever wishes to investigate 
medicine properly, should proceed thus: in the first place to consider the seasons of the year, and what effects each 
of them produces for they are not at all alike, but differ much from themselves in regard to their changes. Then the 
winds, the hot and the cold, especially such as are common to all countries, and then such as are peculiar to each 
locality.” 
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respiratory deaths, respectively, the increase being greater for the older age groups. Hassi (2005) 

presents a review of the literature on cold exposure mortality.  

The other mechanism through which weather exerts a human impact, especially in 

developing countries, is indirect. It can be understood as a “food-security mechanism,” 

characterized in general terms by two different channels. One channel could be described as an 

“income-based channel” in which health outcomes are negatively influenced as a result of 

adverse weather disrupting the household’s sources of income on which it relies for subsistence 

(Burgess et al., 2011). Indeed, many regions in the world, and particularly the poorest, rely 

almost solely on small-scale, climate-sensitive subsistence farming, which is especially 

susceptible to inclement weather (IPCC, 2012.)  The other channel could take the form of a 

“consumption-based channel” whereby consumption of basic goods and food intake is restrained 

as a result of natural-calamity-induced supply shortages, speculative behavior, and increased 

demand to deal with uncertainty. The economic consequence of extreme weather is thus higher 

food prices, which ultimately affect the poor as a result of reduced purchasing power, thus 

increasing their likelihood of becoming famine victims (Lin and Yang, 2000.) In all, weather has 

played a major role in 17 out of 24 major famines from 1693 through 2005 (for a listing of 

famines, see Ó Gráda, 2007, p. 20), suggesting that the food-security mechanism is as relevant as 

the direct human physiology channel.3  

There are many instances in the development and agricultural economics literature 

exposing how the income-based channel operates in a self-sufficiency farming context. For 

instance, in an influential article, Sen (1981, p. 449) discusses the Ethiopian and Bangladeshi 

famines of the early 1970s and weather (droughts and floods, respectively), and points out that in 

both cases farmers were disproportionally affected: “The farming population faced starvation, 

because their own food output was insufficient, and they did not have the ability to buy food 

from others, as food output is also their source of income.” Food output is also negatively 

impacted by extreme temperature, as shown by Hatfield et al. (2011). Wheeler et al. (2000) find 

that crops are especially at risk when extreme temperatures take place near or during their 

pollination phase, while Prasad et al. (2006) document the adverse impact of extreme 

                                                           
3 Intuitively, given that both channels of the food-security mechanism ultimately affect human health, it is also 
useful to consider both income and consumption-based channels as two specific mechanisms through which human 
physiology is impacted. In this sense, the physiological mechanism can be seen as the “aggregate effect” of weather 
on mortality. 



5 
 

temperatures on crop yields. In addition, Porter and Semenov (2005) and Hurkman et al. (2009) 

have found that even if inclement climate does not lead to harvest loss, weather extremes do 

affect photosynthesis and respiration rates, among other crop development and growth processes, 

which, in turn, implies lower crop quality and micronutrient malnutrition as a result. Kettlewell, 

Sothern and Koukkari (1999), Gooding et al. (2003), and Martre et al. (2003) show that there is a 

significant negative association between extreme weather and both protein content and 

nutritional properties. 

The role of weather in the consumption-based channel is also studied by many analysts. 

In the same study on famines presented above, Sen (1981) discusses that the wages paid to farm 

laborers in 1942 did not keep up with the rising price of food caused, inter alia, by a hurricane 

that affected rice harvests, along with inflation in Calcutta, which was going through a boom as 

the Raj put money into war production. This resulted in farmers suffering a reduction in their 

ability to command power over food, which eventually resulted in the Bengal famine of 1943. 

Similar cases in Africa and Europe are discussed at length by Drèze and Sen (1989) and Ó Gráda 

(2007.) Staff in a recent report by the Food and Agriculture Organization of the United Nations 

(FAO, 2008) examine the multiple weather hazards that potentially affect food supply chains 

when agricultural production is not consumed where it is produced: transporting food is 

contingent upon transport, storage, and distribution infrastructure that is vulnerable to the 

destructive nature of severe weather. The more extreme climate events are, the more pronounced 

the damage to that infrastructure, which is likely to result in disrupted processing and delivery 

chains. This, in turn, is reflected in higher food prices, acutely impacting the poorest households, 

who spend a larger share of their income on food (IPCC, 2012.)    

In the next section, I show both the direct and the indirect channels through a theoretical 

model. 

 
2. A Theoretical Framework of Extreme Weather  
 
A theoretical model that portrays the relationship between extreme weather and mortality or 

other health outcomes should include the direct and indirect mechanisms through which weather 

impacts human life. A starting point for this purpose is an extension of the health as human 

capital developed by Becker (2007) and adjusted by Burgess et al. (2011) to incorporate choices 
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that increase agents’ probability of survival under extreme heat. I further expand it in order also 

to account for the negative effects of extreme cold weather.   

Consider the following utility function specified with a constant discount factor for 

different time periods for an infinitely lived agent: 
 

𝑉 = 𝔼 [∑ 𝐷𝑡𝑆𝑡𝑢𝑡(𝑐𝑡)∞
𝑡=0 ]         (1) 

 
where 𝑢𝑡 is the utility at period t that depends on consumption during the same period, 𝑐𝑡. D is 

the discount factor, and 𝑆𝑡  is the probability of the agent being alive (i.e., 1 − 𝑆𝑡  is the 

probability of death) during period t, which equals the product of the conditional probabilities of 

being alive given that the agent was alive during the previous period: 
 

𝑆𝑡 = 𝑠0𝑠1𝑠2 … 𝑠𝑡−1 = ∏ 𝑠𝑡𝑡−1
𝑡=0          (2) 

 
Suppose now that the probability of survival in period t is a function of nutrition, N, 

which is under the agent’s control, subject to a budget constraint, and weather, W, which is 

assumed to be exogenous. For the purposes of this paper, operationalize nutrition as caloric 

intake and weather as the number of days throughout the period with inclement (i.e., excessively 

cold or excessively hot) climate. Hence, let 𝑠𝑡 = (𝑁𝑡,𝑊𝑡) and assume that such a function is 

increasing in N, but decreasing in W. We thus have two types of consumption goods: food, 

denoted by N, and a composite good, G, whose consumption is directly valued by the agent. 

In this specification, extreme weather, ceteris paribus, has a direct impact on the 

probability of the agent’s survival, which was defined as the direct impact of weather on human 

physiology in the previous section. Likewise, the assumption that s is increasing in N is what was 

previously identified as the food-security mechanism, which impacts human wellbeing indirectly 

through disruptions in the income stream or subsistence consumption that lead to severe 

reductions in caloric intake.   

In this formulation, I follow the event timing specification of Burgess et al. (2011): given 

weather conditions for period t, the agent chooses her bundle of goods (𝑁𝑡(𝑊𝑡),𝐺𝑡(𝑊𝑡)). Then 

the agent’s death shock takes place, with the probability of surviving death 𝑠𝑡 = (𝑁𝑡,𝑊𝑡). If the 

agent does survive through the next period, the function V gives her intra-period utility. 

For simplicity, the budget constraint assumes a constant interest rate, and perfect and fair 

annuity and capital markets. Likewise, assume that the price of food is 𝑝𝑁, while that of the 
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composite good equals 𝑝𝐺 , with both being constant over time. Notice that if expenditures in a 

given period surpass income, future savings will have to pay off for the due balance. Thus 
 

𝑠𝑇(𝑦 − 𝑝𝑁𝑁𝑇 − 𝑝𝐺𝐺𝑇) =  𝔼 �∑ 𝑆𝑡�𝑝𝑁𝑁𝑇+𝑝𝐺𝐺𝑇−𝑦�
(1+𝑟)𝑡

∞
𝑡=1 �     (3) 

 
If the agent maximizes her utility function (1) in period 0 subject to the budget constraint 

(3), we arrive at the optimal intertemporal consumption choice 
 

𝑢′(𝑐0)𝔼[𝑠1]
𝐷𝔼[𝑠1𝑢′(𝑐1)]

= 1 + 𝑟          (4) 
 
whereby the first order condition for the choice of caloric intake is 
 
𝜕𝑠0
𝜕𝑁

(𝑢(𝑐0) + 𝔼[∑ 𝐷𝑡𝑆𝑡𝑢𝑡(𝑐𝑡)∞
𝑡=1 ]) = 𝜕𝑠0

𝜕𝑁
𝔼[𝑉0] = 𝜆𝑝𝑁𝑠0     (5) 

 
This is an intertemporal characterization of optimal food choice whereby the marginal 

benefit of spending on food at time t equals the marginal cost of spending on food at time t. 

Equation (5) implies that the optimizing agent equalizes the present-value marginal flow benefit 

from the control across periods. 

This first-order condition can be used to determine the extent to which the agent would 

be willing to pay to insulate herself from inclement weather in period 0. Burgess et al. (2011) 

characterize a transfer 𝜏* that is a function of weather, W, in period 0. Such a transfer holds 

expected lifetime utility V constant regardless of the value of W, so that  
 

𝑑𝜏∗(𝑊0)
𝑑𝑊0

= −𝑑𝑦(𝑊0)
𝑑𝑊0

+ 𝜕𝑁0
𝜕𝑊0

− 𝑑𝑠(𝑁0,𝑊0)
𝑑𝑊0

𝔼 � 𝑉0
𝑠0𝜆
�       (6) 

 
The amount the agent would be willing to pay to insulate herself from inclement weather 

in period 0 depends on three conditions. One is the willingness to avoid the risk of being exposed 

to the negative physiological impacts of weather, which as discussed in the previous section, may 

ultimately lead to death. This is represented by the third term in equation (6), −𝑑𝑠(𝑁0,𝑊0)
𝑑𝑊0

𝔼 � 𝑉0
𝑠0𝜆
�, 

which is the product of the probability of surviving given weather conditions W, 𝑑𝑠(𝑁0,𝑊0)
𝑑𝑊0

, and 

what Becker (2007, p. 384) refers to as “the statistical value of life,” which is the monetary value 

given by the agent of surviving through period 0, 𝔼 � 𝑉0
𝑠0𝜆
�. 



8 
 

Also, given that extreme weather puts food-security at risk, the agent would be willing to 

pay an amount equal to the first term of equation (6), −𝑑𝑦(𝑊0)
𝑑𝑊0

, to avoid any loss of income 

resulting from extreme weather. Finally, the agent would need to be compensated for any 

changes in terms of food expenditure derived from the agent trying to reduce her chance of dying 

by counterweighing the negative effects of severe climate through the acquisition of more 

nutrients. This is expressed by the second term of Equation (6), 𝜕𝑁0
𝜕𝑊0

.   

Based on equation (6), I propose an empirical approach that estimates the effect of 

weather on human physiology, particularly on death, as well as that of climate on variables that 

determine incomes. As a result of money fungibility, it does not matter whether the agent faces a 

climate shock through either the human physiology or the food-security channel. The agent is 

only concerned about being insulated from inclement weather, for which she is willing to pay a 

price. A consideration that needs to be emphasized is that, given that markets are complete in this 

model, a policy that corrects market failure is irrelevant. However, as Burgess et al. (2011, p. 10) 

argue, such a model “does characterize the value that households place on avoiding temperature 

extremes, which an external funder, such as a foreign donor, might wish to use to compare the 

merits of competing policy proposals.” 

In the next section, I discuss the data I use to carry out an empirical analysis based on this 

theoretical framework. 

 
3. Data 
 
As I have argued throughout this paper so far, weather impacts humans via two channels, one 

that is direct, resulting from severe climate affecting human physiology, and another that is 

indirect, whereby weather disturbs the mechanisms through which households secure their food 

consumption. The extreme consequence of both channels is death. 

An empirical specification of the theoretical framework presented above, which 

illustrates the human impact of weather, requires data on three types of variables: one that 

operationalizes human physiology, one that operationalizes food security, and one that 

operationalizes climate.  

Typical variables that may work well to assess the impact of weather variation on human 

physiology include the incidence of particular water and vector-borne diseases, hospital 
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admissions, clinic attendance, morbidity rates, and mortality rates (WHO, WMO and UNEP, 

2003.) In terms of variables that are likely to reflect a given community’s degree of food 

security—especially in low and middle-income area contexts—income, job productivity and 

nature of job, crop production, and food consumption are all plausible proxies (USAID, 1992.) 

Finally, the natural choices for studying climatic phenomena are temperature, pressure, rainfall, 

hail, aridity, wind, as well as the occurrence of certain weather events like tornados and cyclones 

(WMO 2012.) 

As good evidence requires good data, I selected those variables generated with high 

frequency, high spatial disaggregation, and high-quality monitoring. The following constitute the 

variables that I employ for the following empirical analysis.  

 
3.1 Mortality 
 
To calculate mortality rates, information on deaths, births, and population are needed. I obtained 

death and birth counts data at the municipal level through each state’s Civil Registry Office. 

Since each state has its own registration data and formats, I digitized and harmonized the 32 

datasets (31 state datasets and one dataset for Mexico City) using standardized codes for births, 

deaths, and fetal deaths. I collected monthly data for the period January 1990-December 2010 for 

2,454 Mexican municipalities (99.9 percent of the total.)   

Given that annual population data are not available in Mexico, I constructed a population 

monthly time series using censal information for population in combination with migration flow 

data obtained from Mexico’s National Council of Population Demographic Indicators and the 

State and Municipal Database System of Mexico’s National Institute of Statistics (INEGI.) These 

data are available for years 1990, 1995, 2000, and 2010. For intercensal years, I estimated 

(midyear) population using the component method, which is defined by the use of estimates or 

projections of births, deaths, and net migration to update a population (Hollmann, Mulder and 

Kallan, 2000.) In its simplest statement, the component method is expressed by the following 

equation:  
 

𝑃𝑡 = 𝑃𝑡−1 + 𝐵𝑡−1,𝑡 − 𝐷𝑡−1,𝑡 + 𝑀𝑡−1,𝑡        (7) 
 
where Pt = population at time t; 

Pt-1 = population at time t-1; 



10 
 

Bt-1,t = births, in the interval from time t-1 to time t; 

Dt-1,t = deaths, in the interval from time t-1 to time t; and 

Mt-1,t = net migration, in the interval from time t-1 to time t.  

For simplicity, I computed intercensal net migration using what demographers refer to as 

the Das Gupta method (Das Gupta 1991.) This technique assumes that the ratio of the intercensal 

estimate to the postcensal estimate should follow a geometric progression over the five-year 

period. Naturally, there is no universal norm for producing intercensal migration estimates, and 

other methodologies could have also been employed. 

With these variables, I constructed a crude (total) mortality rate, which I define as the 

total number of deaths (excluding fetal deaths) per period per 1,000 people. In addition to the 

crude mortality rate, I also distinguish among two subtypes of mortality indicators: infant 

mortality rate (i.e., the number of deaths of children less than 1 year old per period per 1,000 live 

births); and fetal mortality rate (i.e., the number of stillbirths per period per 1,000 live births). I 

also compare these mortality rates by area, defining the rural mortality rate as the mortality rate 

in communities with fewer than 2,500 residents, and urban mortality rate as the mortality rate in 

communities with 2,500 residents or more. Table 1 presents relevant descriptive statistics. 

Of particular relevance is the comparative analysis of urban and rural areas. The 

distinction follows an intuitive logic: the food-security mechanism is more likely to find 

empirical support in rural communities. The reason is twofold: on the one hand, extreme weather 

has a clear and direct impact on agriculture, and this sector is the main source of employment for 

rural regions: the latest Household Income and Expenditures National Survey (INEGI, 2011) is 

indicative: in 2010, almost 62 percent of surveyed households living in rural communities 

worked in the agricultural sector, while only 7 percent of households residing in urban areas did. 

On the other hand, this spatial imbalance translates into significant differences in income: the 

same survey reports that, also in 2010, households where no members were employed in 

agriculture had an income, on average, of 13,365 Mexican pesos per month (1,062 USD). 4 

Households with some (but not all) members being employed in the primary sector of the 

economy earned, on average, 8,618 pesos (686 USD). Finally, in the case where the entire 

                                                           
4 Based on the average midpoint exchange rate of 0.0796 MXN/USD from August 21, 2010 through November 28, 
2010, the period when the survey was carried out. 
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household is engaged in agricultural work, monthly income averages 4,841 pesos (385 USD), or 

roughly a third of income in non-agricultural households.  

These differences, in turn, are reflected in two different patterns of household 

consumption: monthly expenditures in urban areas are high (relative to rural communities) and 

food consumption has a relatively smaller share of total expenditures. Urban households spend 

on average 8,878 pesos (707 USD) per month, of which almost 32 percent is spent on food. In 

contrast, rural households spend on average 4,602 (366 USD) pesos per month, of which 40 

percent is spent on food. Table 2 summarizes these discrepancies. 

 
3.2 Agricultural Outcomes 
 
I obtained data for agricultural outcomes for the period 1994-2009 using Mexico’s Agro-

alimentary and Fishing Information System. Information on the value of agricultural output (in 

thousands of pesos), and I obtained total hectares under crop cultivation (planted and harvested) 

at the municipal level for 2,454 municipalities.  

In addition to totals, I collected municipal data for 10 major crops5 for the volume of 

production (in tons) and average prices per ton. Using this dataset, I created two additional 

indicators: I define agricultural productivity as the value of agricultural output divided by 

harvested hectare, whereas crop yields are expressed as the volume of production divided by 

harvested hectare. Monetary values are expressed in Mexican pesos of 2009. Prices were 

deflated using a price index that weights the municipal price of each of the 10 major crops by the 

value of agricultural output of that crop in a given year.  

Given the nature of the agricultural cycle in Mexico, the calendar year and the 

agricultural year differ. By convention, the agricultural year in Mexico lasts 18 months: it begins 

on October 1 of year t – 1 and ends on March 30 of year t + 1, and thus the first three months of 

a given agricultural year overlap with the last three months of the previous agricultural year. It 

should be noticed that I collected annual agricultural data based on agricultural years. The 

empirical analysis reconciles calendar years and agricultural cycles by synchronizing weather 

data accordingly. In addition, an analysis of my agricultural data shows that, even though there 

are differences resulting from geographical location, elevation, rainfall, coastal proximity, and 

varying photoperiods, the period when crop growing intensifies starts typically in early April and 

                                                           
5 These crops are green alfalfa, beans, corn, green chili, oats, pastures, sorghum, tomato, tomatillo, and wheat. 
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ends in late August. For my empirical analysis, I thus define this period as Mexico’s growing 

season. Similarly, the period of November through February is characterized by crop-growing 

inactivity, and throughout this paper I will refer to this timespan as the non-growing season.  

Table 3 presents summary statistics for several agricultural outcomes, including yields and 

volume of production for corn, Mexico’s main staple. 

 
3.3 Weather 
 
The ultimate essential data to carry out any empirical analysis on weather and its impacts are, of 

course, climatic records. There is a variety of models that provide environmental analysts with 

climatic observations and some have been employed to assess weather impacts in Mexico in 

terms of human, environmental, and agricultural outcomes. In studying the impact of severe 

weather on health and cognitive development, Aguilar and Vicarelli (2011) use precipitation data 

at 0.5 degree resolution climate grids, which were generated by the Climate Research Unit and 

the Tyndall Centre for Climate Change Research, both at the University of East Anglia. Sáenz 

Romero et al. (2010) develop spatial climate models to estimate plant-climate relationships using 

thin plate smoothing splines of ANUSPLIN software, created by the Australian National 

University. Pollak and Corbett (1993) use spatial agroclimatic data to determine corn ecologies.   

The underlying problem with these and other works that follow similar methodologies is 

their use of monthly climatic data. Using monthly climatic data is problematic due to the 

nonlinear effects of weather, which may be concealed when, for example, daily observations are 

averaged into monthly or seasonal variables. In effect, daily and even finer-scale weather data 

facilitate estimation of models that aim to identify nonlinearities and breakpoints in the effect of 

weather. Using daily temperature data, Schlenker and Roberts (2009) find a nonlinear 

asymmetric relationship between weather and crops yields in the United States, with yields 

decreasing more rapidly above the optimal temperature vis-à-vis their increasing below the 

optimal temperature. The assumption of nonlinearity is particularly critical for studies like this 

one, where the researcher attempts to represent the relationship between weather and human 

physiology. In many studies, for the case of mortality, a J-or U-shaped curve has been found 

appropriate to describe the association, with elevated mortality being observed at temperature 

extremes and relatively lower mortality at moderate temperatures (Burgess et al., 2011; Curriero 
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et al., 2002; Deschênes and Greenstone, 2011; Huynen et al., 2001; Kunst, Looman and 

Mackenbach, 1993.) 

For this paper, I use daily temperature and precipitation data from the North American 

Regional Reanalysis (NARR) model (NOAA, 2012.) The NARR project is a long-term, high-

frequency, dynamically consistent meteorological and land surface hydrology dataset developed 

by the National Centers for Environmental Prediction (NCEP) as an extension of the NCEP 

Global Reanalysis, which is run over the North American Region. It covers 1979 to 2010 and is 

provided eight times daily on a Northern Hemisphere Lambert Conformal Conic grid with a 

resolution of 0.3 degrees (32km)/45 layers at the lowest latitude. In addition to the modeling 

benefits of high spatial resolution, I chose to work with the NARR due to the model’s good 

representation of extreme weather events, resulting from the model outputting all “native” (Eta) 

grid time-integrated quantities of water budget. Mesinger et al. (2006), for instance, compare the 

NARR precipitation for January 1998 (when the El Niño effect was underway) with observed 

precipitation. Their comparison shows that over land there is an extremely high agreement 

between NARR and observed precipitation, even over the complex western topography of 

Mexico. 

Other variables could be employed for future work. The NARR dataset also includes 

information on wind speed, humidity, elevation, and other common climatic factors, but 

evidence shows that, at least for the most important crops of Mexico in terms of output (i.e., 

corn, sorghum, and wheat), temperature and precipitation are the two weather elements that can 

effectively inhibit plant growth and development to the point of crop failure (Ministry of 

Agriculture of Mexico, 2012b.) Conversely, non-optimal values in altitude, soil quality, or light 

intensity requirements may only retard growth or reduce yields, but these factors are not likely to 

put crops at imminent risk (FAO, 2007.)   

Daily temperature and precipitation data were constructed in two simple steps. First, a 

spherical interpolation routine needs to be applied to the data: I took weighted averages of the 

daily mean temperature and accumulated precipitation of every NARR gridpoint within 30 

kilometers of each municipality’s geographic center, with the inverse squared haversine distance 

between the NARR gridpoint and the municipality centroid as the weighting factor.6 Second, all 

                                                           
6 The haversine distance measure is useful when the units are located on the surface of the earth and the coordinate 
variables represent the geographical coordinates of the spatial units and a spherical distance between the spatial units 
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the (365, or 366 for leap years) daily temperature estimates in a given year are distributed over 

14 ranges or bins: daily mean temperature lower than 10°C; daily mean temperature higher than 

30°C, and 10 two-degree-wide ranges (i.e., 10°C-12°C, 12°C-14°C,…, 28°C-30°C) in between. 

Similarly, the daily accumulated rainfall estimates are distributed over 15 two-millimeter-wide 

ranges (i.e., 0-2mm, 2-4mm,…, 28-30mm) plus an extra bin for daily accumulated precipitation 

exceeding 30mm, and another bin containing exclusively days without rainfall. The binning of 

the weather data is important for the empirical strategy that will follow, for it would maintain 

weather variation in any given specification, thus accounting for the nonlinear effects of weather 

extremes discussed above.  

Figures 1 and 2 illustrate this binning for the period 1979-2009. The height of the bars 

represents the weighted average number of days across municipality-by-year temperature and 

rainfall realizations, where the municipality-by-year’s total population is the weight. The 

weighted average temperature is 18.6°C, while the weighted average daily accumulated 

precipitation is approximately 2mm.  

An alternative approach to binning is suggested by Burgess et al. (2011). They construct 

a measure of the cumulative number of degrees-times-days that exceed 32°C in a year, in an 

attempt to reflect the nonlinear effects of temperature. 7 Although it collapses daily weather 

observations into a single metric, this measure, by taking into account the number of degrees per 

day above a certain threshold, still indirectly accounts for the nonlinear effects of weather. For 

this paper, I follow a similar strategy by constructing four aggregate measures: the cumulative 

degrees-times-days that exceed 30°C in a year, the cumulative degrees-times-days below 10°C in 

a year, the total millimeters-times-days that exceed 8 millimeters, and the total millimeters-

times-days below 3 millimeters. The rationale behind these thresholds is ecological. These are 

the minimum and maximum temperature and precipitation requirements for corn, Mexico’s 

staple crop. Beyond these values, corn usually begins to stress, putting at serious risk its survival 

(Gómez Rojas and Esquivel Mota, 2002; Ministry of Agriculture of Mexico, 2012a; Neild and 

Newman, 1990; North Dakota Corn Utilization Council, 1997.)   

                                                                                                                                                                                           
needs to be calculated. This is accomplished by calculating 𝑑𝑠𝑡 = 𝑟 × 𝑐, where 𝑟 is the mean radius of the Earth 
(6,371.009 kms); 𝑐 = 2 arcsin�min�1,√𝑎�� ; 𝑎 = sin2 𝜙 + cos(𝜙1) cos(𝜙2) sin2 𝜆 ; 𝜙 = 1

2(𝜙2 − 𝜙1) =
1
2(𝑥2[𝑡] − 𝑥2[𝑠]) ;  𝜆 = 1

2(𝜆2 − 𝜆1) = 1
2(𝑥1[𝑡] − 𝑥1[𝑠]) ; 𝑥1[𝑠]  and 𝑥1[𝑡]  are the longitudes of point 𝑠  and point 𝑡 , 

respectively; and 𝑥2[𝑠] and 𝑥2[𝑡] are the latitudes of point 𝑠 and point 𝑡, respectively. 
7 The authors’ choice of using 32°C as their threshold is based on the public health and agronomy research that has 
consistently shown that temperatures higher than 32°C are severe for both human and crop physiology.  
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Table 4 summarizes the descriptive statistics for the temperature and precipitation 

variables employed. 

 
4. Empirical Strategy 
 
Two empirical specifications are employed to establish the relationship between weather and 

mortality. The first one is an attempt to capture the full distribution of annual fluctuations in 

weather and based on the following equation: 
 

𝑌𝑚𝑡 = ∑ 𝜃𝑗𝑡𝑒𝑚𝑝𝑏𝑖𝑛𝑚𝑡𝑗 +12
𝑗=1 ∑ 𝜌𝑘𝑟𝑎𝑖𝑛𝑏𝑖𝑛𝑚𝑡𝑘 + 𝛼𝑚 + 𝛾𝑡 + 𝜆𝑟1𝑡 +17

𝑘=1 𝜆𝑟2𝑡2 + 𝜀𝑚𝑡  (8) 
 
where 𝑌𝑚𝑡 is the log (crude or an alternative) mortality rate (or agricultural outcome of interest) 

in municipality m in year t (using levels virtually leaves the results unchanged, but for the sake of 

clarity, my analysis is carried out using logs). 𝑡𝑒𝑚𝑝𝑏𝑖𝑛𝑚𝑡𝑗  and 𝑟𝑎𝑖𝑛𝑏𝑖𝑛𝑚𝑡𝑘  are the separate 

temperature and precipitation bins described above for municipality m in year t.  

The impact of temperature thus equals the sum of all j bins, whereas the impact of 

precipitation is equivalent to the sum of all k bins. Notice that the only functional form 

restrictions in this specification are i) that the mortality impacts of temperature and precipitation 

are constant within each 2-degree and 2-millimeter range, respectively, and ii) that all days with 

temperatures/rainfall above (below or equal to) 30°C/30mm (10°C/0mm) have the same impact 

in terms of mortality.  

𝛼𝑚 is the fixed effect of municipality m. Including municipality fixed effects controls for 

the average differences across municipalities in any observable or unobservable predictors of log 

mortality rate, so that, say, demographic, socioeconomic, or clinical impacts will not be confused  

with that of weather. Similarly, 𝛾𝑡 is the unrestricted time fixed effect of year t. These fixed 

effects control for time-varying differences in the dependent variable that are common across 

municipalities, such as the introduction of the Seguro Popular in 2003. Because such shocks are 

unlikely to have the same effect at the regional level (for instance, among Seguro Popular 

delegations, the pricing of prescription drugs varies greatly across regions), equation (8) also 

includes quadratic polynomial time trends 𝜆𝑟  for the r=5 mesoregions of Mexico (Northeast, 

Northwest, South, Center, and Center-West) which, at least in terms of weather, are fairly 

homogenous. Finally, 𝜀𝑚𝑡 is the stochastic error term.  

The second specification fits the following equation:  
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𝑌𝑚𝑡 = 𝛽𝐶𝐷𝐷30𝑚𝑡 + 𝛿𝐶𝐷𝐷10𝑚𝑡 + 𝜑𝐶𝑀𝑀𝐷8𝑚𝑡 + 𝜂𝐶𝑀𝑀𝐷3𝑚𝑡 + 𝛼𝑚 + 𝛾𝑡 + 𝜆𝑟1𝑡 + 𝜆𝑟2𝑡2 + 𝜀𝑚𝑡   (9) 
 
where 𝐶𝐷𝐷30𝑚𝑡  (𝐶𝐷𝐷10𝑚𝑡)  is the cumulative degrees-times-days that exceed 30°C (below 

10°C) in municipality m in year t. Similarly, 𝐶𝑀𝑀𝐷8𝑚𝑡  (𝐶𝑀𝑀𝐷3𝑚𝑡)  is the cumulative 

millimeters-times-days that exceed 8mm (below 3mm) in municipality m in year t. This 

specification also includes municipal fixed effects 𝛼𝑚 , time fixed effects 𝛾𝑡 , quadratic 

polynomial time trends 𝜆𝑟, and a stochastic error term 𝜀𝑚𝑡.  

Although by definition a more restrictive approach than equation (8), for it assumes that 

the impact of weather on mortality is determined by extreme temperatures and rainfall only, 

equation (9), with only four estimated coefficients instead of 29, results in sensitivity gains due 

to improved statistical power to detect weather effects.   

As discussed by Burgess et al. (2011) and Deschênes and Greenstone (2011), the validity 

of my empirical strategy for studying the weather-mortality relationship relies on the assumption 

that equations (8) and (9) yield unbiased estimates of the 𝜃𝑗 ,𝜌𝑘,𝛽, 𝛿,𝜑, and 𝜂 vectors. Given the 

two-way fixed effect identification strategy employed, any omitted variables that are constant 

over time and/or particular to one municipality will not bias the estimates, even if the omitted 

variables are correlated with the explanatory variables. If weather variability is supposed to be 

random, then it is plausible to assume it is uncorrelated to unobserved mortality determinants.  

 
5. Results 
 
I present two different sets of results, based on the two hypothesized channels through which 

severe weather affects humans to the point of causing death: i) the human physiology channel 

(severe weather impacts human physiology through thermal stress and disease, which in an 

extreme situation may ultimately lead to death) and ii) the food-security channel (mortality rates 

are driven as a result of adverse weather disrupting either the household’s sources of income on 

which it relies for subsistence or its purchasing-power capacity, or both, increasing their 

likelihood of becoming famine victims as a result). 

These results are derived from the empirical specification introduced above. Because 

observing a common variance structure over time is unlikely, my results are based on a cluster-

correlated Huber-White covariance matrix estimator, which avoids the assumption of 

homoskedasticity (Wooldridge, 2004.)  In addition, my empirical specification is weighted by 

the square root of the total municipal population, in an effort to correct for heteroskedasticity 
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associated with municipal differences in estimation precision of mortality rates, having the 

additional advantage of presenting impacts on one person, rather than one municipality 

(Deschênes and Greenstone, 2011).   

 
5.1 The Physiology Channel  
 
Figures 3 and 4 present the results of the impact of temperature and precipitation on mortality 

rates. More specifically, these figures show the estimated impact of an additional day in 12 

temperature ranges and 17 precipitation ranges, relative to a reference range, which in this case is 

the 16°-18°C range for temperature and the 4-6mm range for precipitation.  

In the case of temperature, two patterns emerge. First, notice that, graphically, a J-shaped 

curve is fairly appropriate to describe the weather-death association. As theory predicts, 

moderate temperature ranges do not seem to have an impact on mortality rates. In fact, among 

the eight bins that account for temperatures between 12°-26°C, only two are statistically 

significant at the conventional levels. Colder ranges in general do not have an effect statistically 

different from the reference bin. Second, extreme hot weather does seem to have a sustained 

impact on death. All three bins including the hotter temperature ranges are statistically different 

from the reference category. For instance, one additional day with an average temperature above 

26°C increases mortality rates by at least 0.1 percent relative to a day with a mean temperature in 

the 16°C-18°C range.   

Precipitation impacts are typically insignificant at the conventional levels, with the 

exception of the extreme-precipitation bins (i.e., the far-left and far-right categories including 

days with no precipitation and rainfall exceeding 30mm., respectively) Although what can be 

thought of as the “drought bin” (i.e., the bin that includes day with no precipitation) does not 

comparatively have an important impact on death, extreme rainfall does pose significant threats 

to human wellbeing. One single day with rainfall higher than 30mm increases mortality rates by 

0.7 percent relative to one with rainfall ranging from 6-8mm.  

As I pointed out before, some studies have investigated the impact of extreme weather on 

perinatal and infant mortality. Hashizume et al. (2009) find that perinatal mortality sharply 

increases with low temperatures. Dadvand et al. (2011) conclude that extreme heat was 

associated with a reduction in the average gestational age of children, which is associated with 

perinatal mortality and morbidity. Burgess et al. (2011) show that weather extremes appear to 
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increase infant mortality in rural India, but not in urban areas. Scheers-Masters, Schootman and 

Thach (2004) find no evidence that elevated environmental temperatures have a significant role 

in the development of sudden infant death syndrome.  

Figures 5 and 6 show that there is no clear relationship between weather, either extreme 

or moderate, and fetal mortality. If anything, colder temperatures seem to be associated with 

lower fetal mortality rates, but the effect is minimal. All the temperature ranges above 12°C are 

small in magnitude and insignificant. As for infant mortality, extreme heat is positively 

associated with infant mortality rates, but in terms of extreme cold, it is not possible to reject the 

null of equality with the base category. It is noteworthy to mention that the point estimate of days 

with temperatures higher than 30°C relative to the reference 16°-18°C bin is 0.15 percent for the 

crude mortality response function, while it is 50 percent larger (0.23 percent) for the infant 

mortality specification. This finding echoes Deschênes and Greenstone’s (2011) result that the 

impact on annual mortality of hot weather (i.e., higher than 90°F) for infants is twice as large as 

the point estimate for the general population.  The impact of precipitation on both fetal and infant 

mortality is, with frequency, statistically nil.  

Figures 9 through 12 show the relationship between weather and death by type of area. I 

analyze two types of areas: rural and urban. Recall that I define rural mortality rate as the 

mortality rate in communities with fewer than 2,500 residents, and urban mortality rate as the 

mortality rate in communities with 2,500 residents or more. It is important to emphasize that this 

differentiation is relevant because it would indicate that people living in rural areas are 

potentially more exposed to the negative impacts of weather, given that their main economic 

activity, agriculture, is easily upended by climate shocks.    

From the analysis of these plots, several interesting findings emerge. In terms of 

temperature, the effect on death is virtually zero for urban areas: only two out of the 12 

temperature bins are significant, but small in magnitude, with no temperature bins being 

associated with increases in mortality rates greater than 0.1 percent. Conversely, the response 

function between log rural mortality rate and temperature indicates that rural areas are especially 

vulnerable to the negative effects of extreme (particularly hot) temperatures. Although the 

variance of rural mortality is high (see Table 1), which results in wider confidence intervals, the 

five hottest temperature bins (i.e., temperatures higher than 26°C) are all statistically significant 

and of higher magnitude than the urban coefficients. For example, exchanging a single day in the 
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16°C-18°C range for one in the >30°C range would lead to an increase in annual mortality rates 

of 0.2 percent in rural areas (for urban areas the coefficient is not statistically different from the 

reference bin.) In terms of the precipitation response functions, with the exception of a couple of 

bins, for all the coefficients, both for urban and rural areas, it is not possible to reject the null of 

equality with the base temperature/precipitation bin.  

To evaluate the robustness of these results, I present in Table 5 several versions of 

Equation (9) which, in spite of being less flexible than previous specifications of Equation (8), 

offers sensitivity gains due to improved statistical power to detect weather effects.  Column (1) 

shows the relationship between extreme weather and annual mortality. Once again, cold 

temperatures do not seem to have an effect on crude mortality rates. The impact of hot weather 

is, in comparison, as found before, considerable: each additional degree above 30°C per year is 

associated with a 0.02 percent increase in the crude mortality rate. In other words, a one-standard 

deviation (34.3 percent) increase in the cumulative-degree-days above 30°C would lead to a 0.7 

percent increase in the crude mortality rates. Exposure to extreme precipitation patterns, defined 

as the cumulative-millimeter-days above 8mm or below 3mm, is positively associated with crude 

mortality rates. Each additional millimeter above or below the threshold causes a 0.01-0.02 

percent increase in the crude mortality rate. 

Columns (2) and (3) show the relationship between extreme weather and infant and fetal 

mortality rates. As with the previous specification, severe weather events do not seem in general 

to lead to an increase in mortality in infants or stillbirths, with the exception of extreme heat, 

which is associated with a 0.04 percent increase in infant mortality rates. Extreme precipitation 

patterns seem to be negatively associated with these types of mortality indicators, or at most, 

have a negligible positive effect. 

Columns (5) and (6) compare the effect of weather on mortality by type of area. Once 

again, the impact of cold weather is statistically zero. In terms of extreme heat and precipitation, 

it is again found that rural areas are more vulnerable than urban zones. According to equation 

(9), the effect of an additional degree above 30°C per year on mortality rates is twice as large for 

rural regions relative to urban areas. In terms of precipitation, differences are more prominent, 

with exposure to an additional millimeter-day above 8mm having an impact on rural mortality 

rates approximately eight times larger than on urban mortality rates.  
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The story told so far is that hot temperatures are associated with higher mortality rates. In 

particular, infants seem to be a segment of the population particularly vulnerable to extreme heat. 

The impact of cold temperatures is normally trivial. In addition, the impact of (hot) temperature 

seems to be differentiated: it is larger for rural regions than for urban areas. As for rainfall, the 

effect is ambiguous: depending on the specification, precipitation extremes may be strongly 

associated with higher mortality or reflect habitually insignificant estimates.  

The rural/urban differentiation is to be expected if the food-security mechanism is at 

work. In particular, the “income-based channel,” in which health outcomes are negatively 

influenced as a result of adverse weather disrupting the household’s sources of income on which 

it relies for subsistence is more likely to operate in rural regions. Agriculture, which is the  

economic sector most susceptible to weather variability, is the main income-generating activity 

in rural communities, while in urban centers industry and services play a more significant role 

(see Table 2).  

This hypothesis is tested below, first by comparing the impact of weather during the 

growing season vis-à-vis the non-growing season. If weather leads to contractions in agricultural 

output, which in turn decreases income, constraining consumption and ultimately causing death, 

then extreme weather taking place during the growing season should be particularly damaging, 

but severe weather events occurring in the non-growing season should have an inconsequential 

impact on mortality.  

 
5.2 The Food-Security Channel 
 
The timing of extreme weather is important: a look at Figures 13-20 validates once more the 

negative effect of high temperatures on mortality, provided that such high temperatures take 

place during the growing season. This effect is statistically significant for rural areas, but not for 

urban areas, which suggests that rural specialization in agriculture may explain differences in 

mortality rates, as discussed above. Even though signs and magnitudes seem to be correct for the 

temperature impacts during the non-growing season, the null hypothesis of equality with the base 

category is not rejected for most of the temperature bins. The three higher temperature bins for 

rural areas are statistically different from zero: an additional single day with temperatures higher 

than 26°C increases mortality on average by 0.2 percent, relative to the base category of 16°C-

18°C, which indicates that virtually all the effect that temperature exerts on mortality is 
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explained by the occurrence of extreme events during the growing season. Precipitation impacts 

are generally insignificant at the conventional levels, both for urban and rural areas, regardless of 

the timing of rainfall.  

Figures 21-26 point to a similar conclusion in terms of the effect of weather on 

agricultural output. Notice that the effect of extreme weather on agricultural output is not 

apparent at first sight. The number of extreme hot (or cold) days in a given agricultural year does 

not seem to have a significant impact on agricultural output (see Figure 21.) However, when the 

regressors consist of temperature and precipitation bins for growing-season days only, a clear 

negative relationship emerges: the higher the temperature, the lower the agricultural output (see 

Figure 22.) On the contrary, as expected, when one regresses agricultural productivity against 

non-growing-season weather bins, one finds that there is no relationship between temperature 

and agricultural output that is statistically significant at the conventional levels, which is 

reflected in the fairly flat line shown in Figure 23.  As in the mortality analysis, the relationship 

between precipitation and agricultural output, as modeled, yields insignificant results (see 

Figures 23-26.)  

It is important to notice that, because of the reduced number of observations per bin 

(instead of 365 days per year, the growing season, as defined, has 153 days, while the non-

growing season comprises only 120 days), parameter estimation precision is reduced. Yet, the 

same results are found when estimating equation (9) for urban and rural areas. In terms of 

temperature, hot weather is substantially more dangerous than cold temperatures in Mexico. 

Again, severe temperature impacts on mortality are typically zero or slightly positive during the 

non-growing season. Conversely, they are large in magnitude and statistically significant during 

the growing season (with the exception of cold weather in rural areas, whose impact is 

statistically zero.)  

Similarly, extreme precipitation patterns have a more profound mortality impact in rural 

areas, with rural estimates being approximately three times larger than urban estimates. 

Cumulative-millimeter-day variables are always significant for the growing-season 

specifications, but typically equal to zero in statistical terms for the non-growing season 

regressions.  

An analysis of key variables of the agricultural cycle provides further evidence of the 

food-security channel being at work.  Table 7 presents estimates of the impact of extreme 
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temperatures on agricultural output, agricultural productivity and crop prices, both for the 

growing and the non-growing season, based only on equation (9), given the estimate precision 

issues pointed out above. It is worth noting that these results support the food-security channel 

hypothesis: extreme weather is indeed negatively affecting productivity and prices. In turn, as the 

abundant literature on famines, food supply chains, and agroecology has recurrently shown, this 

reduces income and consumption. 

Columns (1) and (2) in Table 7 report the impact of extreme weather on agricultural 

income. In terms of temperature, the findings are similar to those of the mortality analysis in the 

previous section. Extreme heat, operationalized as the number of cumulative-degree-days above 

30°C, is associated with lower agricultural income, and the association is significant at the 

conventional levels. This is true for the growing season, but not so for the non-growing season. 

In effect, while one additional degree-day above 30°C during the growing season leads to a 5 

percent decrease in agricultural income, one extra degree-day above 30°C during the non-

growing season has an effect that is not statistically different from zero. Once again, consistent 

with the results of the mortality analysis, cold days do not seem to have an impact, either during 

the growing season or during the non-growing season, on agricultural income. In terms of the 

precipitation variables, both “dry” and “wet” days during the growing season lead to decreases in 

income. Both coefficients are negative and statistically significant, but dry days are roughly three 

times more damaging than wet days: an additional millimeter-day above 8 mm. is associated 

with a 0.04 percent decrease in output, while an additional millimeter-day below 3 mm. is 

associated with a 0.13 percent decrease in income. Conversely, precipitation impact estimates for 

the non-growing-season regression are statistically equal to zero. 

Columns (3) and (4) in Table 7 replicate this exercise for agricultural productivity, 

measured as the value of output per cultivated hectare. The impact of extreme weather on 

productivity is very similar to that on agricultural income. First, notice that severe precipitation 

and temperatures taking place during the non-growing season do not seem to have a significant 

effect on agricultural productivity. The null of equality to zero is not rejected for any weather 

coefficient. Second, the effect of abnormally high and low temperature on productivity is 

negative, and comparable in magnitude to the effect on agricultural output, but not statistically 

significant. Finally, both the coefficients for the cumulative-millimeter-days above 8 mm. and 

the cumulative-millimeter-days below 3 mm. are, as expected, negative and significant at the 
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conventional levels, with productivity decreases ranging from 0.02 percent in the case of an extra 

millimeter above 8 mm/day to 0.08 percent for the case of an additional millimeter below 

3mm/day. 

Table 8 presents more specific results, in terms of yields, defined as tons per cultivated 

hectare, for five of the most important crops in Mexico: corn, beans, chilies, tomato, and wheat, 

for which sufficient data are available. Together, these crops make up for more than 55 percent 

of the total value of agricultural output of the country. Columns (1) through (6) show the results 

of estimating equation (8). As in previous versions of Equation (8), moderate temperature and 

precipitation ranges are in general equal to the reference bin, so that only the three most extreme 

bins at both ends of the distribution are presented for the sake of conciseness. An analogous 

pattern to previous estimations arises: cold temperatures usually do not have a significant effect 

on yields; if anything, colder temperatures increase yields. Severely hot temperatures, on the 

contrary, do seem to negatively impact crop yields. For the five crops analyzed, all show a clear 

negative relation between temperature and yields, and three are statistically significant at the 

conventional levels. In the case of Mexico’s staple crop, corn, for which the largest number of 

observations is available, an additional day in any of the three coldest temperature ranges leads 

to an approximate yield increase of 0.1 percent relative to the reference temperature bin of 16°-

18°C. Conversely, an additional day in any of the three hottest temperature ranges, leads, on 

average, to a 0.1 percent yield decrease relative to the reference temperature bin. For other crops, 

the impact of hot temperatures is even more acute: for instance, one single day with temperatures 

higher than 30°C leads to a 0.3 percent decrease in tomato yields and to a 0.5 percent decrease in 

wheat yields.   

The results of precipitation ranges are fairly parallel to those of temperature extremes. 

Precipitation bins for ranges below 4 mm., with the exception of wheat, are negative, and in 

general, significant. Days with limited rainfall, relative to the reference precipitation bin, lead to 

yield decreases ranging from 0.2 percent to 0.9 percent. Days with extreme rainfall, relative to 

the reference precipitation bin, lead to yield decreases ranging from 0.4 percent to 3 percent. 

Once again, taking as an example the representative case of corn, an additional day in the 0 mm. 

bin leads to a 0.2 percent yield decrease (relative to the reference category of 6-8 mm.), while an 

extra day with rainfall surpassing 30 mm. leads to a 0.4 percent yield decrease.     
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If extreme weather, both in terms of precipitation and temperature, leads to decreases in 

output, yields and productivity, then price increases ought to be expected. The price mechanism 

in market economies adjusts in response to constraints in crop supplies. Columns (5) and (6) in 

Table 7 present the results of estimating equation (9) for a bundle of agricultural prices for 10 

representative crops that make up approximately 70 percent of the total value of agricultural 

production in Mexico (Servicio de Información Agroalimentaria y Pesquera, 2012.)  

Indeed, extreme weather does increase agricultural prices, with hot temperatures being 

the weather condition that exacerbates prices most. This pattern once again holds for the growing 

season only. An additional degree-day above 30°C is associated with a sharp 7 percent increase 

in crop prices. Any other severe weather impact is considerably weaker. An additional degree-

day below 10°C leads to a 0.4 percent increase in agricultural prices. Likewise, an extra 

millimeter-day above the 8 mm. threshold is associated with a 0.02 percent increase in crop 

prices, while an extra millimeter-day below the 3 mm. threshold leads to an increase of 

approximately 0.06 percent in agricultural prices. Unsurprisingly, when agricultural income and 

productivity seems to be unaffected by weather, that is, during the non-growing season, prices 

are not affected by severe climate either.8  

 
6. Conclusion 
 
Extreme weather exerts negative effects on humans, particularly on the most vulnerable. Using 

data for all the 2,454 municipalities of Mexico for the period 1980-2010, I analyzed the impact 

of exposure to severe weather, here defined as extreme temperatures and precipitation, on death 

and agricultural outcomes.  

I present empirical evidence for the hypothesis that extreme weather increases mortality 

rates and decreases agricultural income and productivity, in addition to increasing crop prices. In 

particular, I find that extreme heat is the most damaging form severe weather may take. I find 

that extremely hot temperatures increase mortality and crop prices, while they at the same time 

decrease agricultural income, agricultural productivity, and yields of critical crops such as corn, 
                                                           
8 The findings throughout this paper should be interpreted taking into account the inherent limitations of the 
empirical specification. For instance, given that the effect of weather on mortality was estimated based on inter-
annual climate variation, the estimates should be understood as short-term impacts of unanticipated severe weather, 
which provide an upper-bound to the impact of less unpredictable extreme weather. As Burgess et al. (2011, p. 33) 
point out: “individuals are likely to be better able to adapt to long-run, predictable change, for example through 
migration (for example, from rural to urban areas), technology adoption, or occupational change away from climate-
exposed industries such as agriculture.”   
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which a large number of poor households in rural Mexico depend upon for their subsistence. As 

expected, given that Mexico does not have harshly cold seasons, I do not find any statistically 

significant effect of cold weather on health or agricultural outcomes. I find that precipitation 

extremes have an ambiguous effect on mortality depending on the model specification. Evidence 

is more coherent in terms of agricultural outcomes, as I find that both limited and extreme 

rainfall pose negative consequences for crop yields, agricultural incomes and productivity, with 

these effects being observed during the growing season only.   

I find that rural areas are substantially more vulnerable to severe weather than urban 

areas. In addition, I also find that, for rural areas, if extreme weather takes place during the peak 

of the growing season, the effects are considerably stronger than in a situation where climate 

extremes are observed during non-growing times. This echoes the conclusion of Burgess et al. 

(2011) for their study in India. As they put it: “quasi-random weather fluctuations introduce a 

lottery in the survival chances of citizens. But this lottery only affects people living in the rural 

parts where agricultural yields, wages and prices are adversely affected by hot and dry weather” 

(p. 34).  

These results have an important policy implication: under severe weather conditions, a 

free market economy can produce socially unfair outcomes: climate extremes cause crop prices 

to rise precisely when incomes fall (farmers have less output, productivity falls), which in an 

extreme situation may lead to death, as evidenced in this paper. In other words, the price 

mechanism aggravates the problem instead of being self-correcting. Technically speaking, the 

problem is one of missing markets rather than market failure: if regions specialized in agriculture 

(usually rural communities) had sufficient insurance and credit mechanisms catering to the poor, 

these would provide safety nets in the event of a weather shock. As a result, the government may 

play a key role in creating the conditions to mitigate the adverse effects of climate, even though 

these risks cannot be fully eliminated. 

Furthermore, if extreme heat is the most lethal mechanism through which weather affects 

human physiology, and this impact is considerably stronger in rural regions, given their 

dependence on agriculture, the consequences of climate change are likely to be unevenly 

distributed across communities. There is empirical evidence that there has been an overall 

decrease in the number of cold days, while the number of warm spells and heat waves has 

increased (IPCC, 2012). As a result, development policy must encompass differential 
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vulnerability and capacity mechanisms in order for communities to better adapt to these 

changing conditions. Future research should focus on these environmental and institutional 

aspects.  
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Table 1. Mortality Rates in Mexico, 1990-2010, by Type of Area 
 

 Pooled 
(1) 

Rural 
(2) 

Urban 
(3) 

Crude mortality rate 4.8 
(1.4) 

9.1 
(34.5) 

4.9 
(1.9) 

Infant mortality rate 15.4 
(9.6) 

31.6 
(160.3) 

19.8 
(64.9) 

Fetal mortality rate 10.5 
(6.7) 

16.4 
(99.6) 

13.6 
(51.5) 

 
Note: Municipalities may consist of urban areas only, rural areas only, or a combination of both. All statistics are 
weighted by total municipal population. Standard deviations in parentheses. 

 
 

Table 2. Household Income and Expenditures (in Mexican Pesos), by Type of Household 
 

 Income 
 
 

(1) 

Expenditures 
 
 

(2) 

Food 
Consumption 

 
(3) 

% Households 
Employed in 
Agriculture* 

(4) 
Pooled 11,667 7,964 2,607 18.9 
Urban 13,026 8,878 2,816 7.2 
Rural 6,673 4,602 1,839 61.9 

  
 Source: Encuesta Nacional de Ingresos y Gastos de los Hogares 2010.  
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Table 3. Relevant Agricultural Outcomes in Mexico, 1994-2009, by Type of Area 
 Pooled 

(1) 
Rural 

(2) 
Urban 

(3) 
Agricultural output ($1,000) 658,092.4 

(1,959,499) 
664,831.9 

(1,96,9799) 
84,092.1 

 (259,492) 
Agricultural productivity ($/ha) 21.5 

(817.3) 
21.6 

(822.0) 
11.9 

(54.1) 
Harvested hectares (ha) 36,791.8 

(46,923) 
37,154.2 
(47,070) 

6,388.6 
(10,285) 

Yield (corn) (tons/ha) 2.7 
(2.1) 

2.7 
(2.1) 

1.3 
(0.9) 

Volume (corn) (tons) 54,114.5 
(155,137) 

54,709.9 
(155,904) 

1,138.9 
(1,740) 

Price index  2.3 
(2.2) 

2.3 
(2.2) 

2.3 
(2.3) 

 
Note: If fewer than 2,500 residents live in a given municipality, that municipality is considered “rural.” Data refer to the agricultural 
cycle, rather than calendar years. Monetary values are in thousands of pesos of 2009. All statistics are weighted by total harvested 
hectares, except descriptive statistics for corn, which are weighted by harvested hectares of corn. Standard deviations in parentheses. 
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Table 4. Relevant Agricultural Outcomes in Mexico, 1979-2009, by Type of Area 
 

Rates Pooled 
(1) 

Rural 
(2) 

Urban 
(3) 

Daily mean temperature (°C) 18.5 
(4.4) 

17.4 
(3.9) 

18.5 
(4.4) 

Annual average rainfall (mm) 712.8 
(419.1) 

678.9 
(332.7) 

713.0 
(419.5) 

Annual degree-days (over 30°C)  11.6 
(45.5) 

6.8 
(30.0) 

11.6 
(45.5) 

Annual degree-days (below 10°C) 30.1 
(54.7) 

38.7 
(57.8) 

30.1 
(54.7) 

Annual millimeters-days (over 8mm) 174.8 
(225.1) 

129.3 
(139.8) 

175.1 
(225.4) 

Annual millimeters-days (below 3mm) 779.7 
(122.7) 

764.9 
(120.6) 

779.8 
(122.8) 

 
Note: If fewer than 2,500 residents live in a given municipality, such a municipality is considered “rural.” All statistics are 
weighted by total municipal population. Standard deviations in parentheses. 
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Table 5. Estimates of the Impact of Extreme Weather on Relevant Mortality Rates 
 

 Crude 
mortality 

 Infant 
mortality 

 Fetal 
mortality 

 Urban 
mortality 

 Rural 
mortality 

 
           
  (1)   (2)   (3)   (4)   (5)   
Cumulative-degree-
days above 30 

0.00022 *** 0.00038 ** 0.00008  0.00018 ** 0.00034 * 
(0.00007)  (0.00019)  (0.00028)  (0.00007)  (0.00021)  

Cumulative-degree-
days below 10 

0.00004  -0.00017  -0.00041 ** 0.00005  -0.00028  
(0.00005)  (0.00012)  (0.00018)  (0.00009)  (0.00022)  

Cumulative-mm-days 
above 8 

0.00010 *** 0.00006 * -0.00017 *** 0.00003 ** 0.00022 *** 
(0.00001)  (0.00003)  (0.00004)  (0.00002)  (0.00004)  

Cumulative-mm-days 
below 3 

0.00019 *** -0.00004  -0.00021 *** 0.00012 *** 0.00040 *** 
(0.00003)  (0.00007)  (0.00008)  (0.00004)  (0.00009)  

n 
             
48,583         40,425         35,104         29,206         46,384    

 
Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All 
statistics are weighted by total municipal population. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; 
*** significant at 1%. 
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Table 6. Estimates of the Impact of Extreme Weather on Relevant Mortality Rates, by Season 

 
Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All statistics are 
weighted by total municipal population. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. 
  

 Agricultural year  Growing season  Non-growing season  
 Urban 

mortality 
 Rural 

mortality 
 Urban 

mortality 
 Rural 

mortality 
 Urban 

mortality 
 Rural 

mortality 
 

             
  (1)   (2)   (3)   (4)   (5)   (6)   
Cumulative-degree-days 
above 30 

0.00018 ** 0.00034 * 0.02484 *** 0.06166 *** 0.00017 ** 0.00022  
(0.00007)  (0.00021)  (0.00649)  (0.00821)  (0.00008)  (0.00022)  

Cumulative-degree-days 
below 10 

0.00005  -0.00028  0.00261 ** 0.00014  0.00002  -0.00016  
(0.00009)  (0.00022)  (0.00122)  (0.00190)  (0.00010)  (0.00025)  

Cumulative-millimeter-days 
above 8 

0.00003 ** 0.00022 *** 0.00001  0.00033 *** 0.00013 *** 0.00009  
(0.00002)  (0.00004)  (0.00003)  (0.00008)  (0.00005)  (0.00009)  

Cumulative-millimeter-days 
below 3 

0.00012 *** 0.00040 *** 0.00019 *** 0.00070 *** -0.00006  0.00063 ** 
(0.00004)  (0.00009)  (0.00006)  (0.00014)  (0.00013)  (0.00031)  

n              29,206         46,384         29,206         46,384         29,206         46,384    
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Table 7. Estimates of the Impact of Extreme Weather on Relevant Agricultural Outcomes, by Season 

 
Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All statistics are 
weighted by total harvested hectares. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. 
 
 
 
 
  

 Agricultural income  
Agricultural productivity 

(output/ha)  Crop prices  
 Growing 

season 
 Non-

growing 
season 

 Growing 
season 

 Non-
growing 
season 

 Growing 
season 

 Non-
growing 
season 

 

             
  (1)   (2)   (3)   (4)   (5)   (6)   
Cumulative-degree-days 
above 30 

-0.04935 ** 0.00030  -0.05122  0.00102  0.06983 *** -0.00066  
(0.02298)  (0.00057)  (0.03389)  (0.00055)  (0.01951)  (0.00040)  

Cumulative-degree-days 
below 10 

0.00014  0.00054  -0.00556  0.00046  0.00407 * -0.00000  
(0.00373)  (0.00035)  (0.00344)  (0.00034)  (0.00241)  (0.00024)  

Cumulative-millimeter-days 
above 8 

-0.00040 *** -0.00056  -0.00024 ** -0.00055  0.00017 ** 0.00011  
(0.00010)  (0.00043)  (0.00010)  (0.00043)  (0.00008)  (0.00023)  

Cumulative-millimeter-days 
below 3 

-0.00133 *** -0.00148  -0.00079 *** -0.00112  0.00056 ** 0.00076  
(0.00030)  (0.00121)  (0.00031)  (0.00123)  (0.00023)  (0.00055)  

n              27,562         27,562         27,562        27,562        27,715        27,715   
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Table 8. Estimates of the Impact of Extreme Weather on Relevant Crop Yields (tons/ha), by Season 
 

 Impact on log crop yields 

 
Days  

< 10°C   
Days  

10°-12°C   
Days  

12°-14°C   
Days  

26°-28°C   
Days  

28°-30°C   
Days  

> 30°C   
  (1)   (2)   (3)   (4)   (5)   (6)   
Corn 0.00123 *** 0.00089 ** 0.00103 *** -0.00155 *** -0.00093 ** -0.00066 * 
(n=26,343) (0.00039)  (0.00036)  (0.00027)  (0.00036)  (0.00043)  (0.00036)  
Beans 0.00237 *** -0.00041  0.00113  -0.00259 *** -0.00159 * -0.00258 ** 
(n=20,054) (0.00075)  (0.00091)  (0.00089)  (0.00099)  (0.00093)  (0.00107)  
Chillies -0.00003  -0.00496 ** 0.00265   -0.00107  -0.00107  -0.00103  
(n=7,863) (0.00239)  (0.00206)  (0.00232)  (0.00226)  (0.00217)  (0.00225)  
Tomato -0.00393 *** -0.00012  0.00066   -0.00117  -0.00122  -0.00099  
(n=6,270) (0.00152)  (0.00129)  (0.00099)  (0.00132)  (0.00115)  (0.00186)  
Wheat 0.00020   -0.0018  0.00079   -0.00101  -0.00443 ** -0.00511 *** 
(n=6,261) (0.00074)  (0.00084)  (0.00056)  (0.00125)  (0.00221)  (0.00188)  
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Table 8., continued 
 Impact on log crop yields 

 
Days 
0mm   

Days  
0-2mm   

Days 
2-4mm   

Days  
26-28mm   

Days  
28-30mm   

Days  
> 30mm   

  (1)   (2)   (3)   (4)   (5)   (6)   
Corn -0.00183 ** -0.00219 *** -0.00265 *** -0.00728  0.00300  -0.00386 * 
(n=26,343) (0.00077)  (0.00082)  (0.00096)  (0.00491)  (0.00871)  (0.00200)  
Beans -0.00205  -0.00232  -0.00076  -0.00133  0.01481  -0.00436  
(n=20,054) (0.00268)  (0.00262)  (0.00355)  (0.00615)  (0.00952)  (0.00365)  
Chillies -0.00671 ** -0.00648 ** -0.00875 ** -0.00020  -0.01627  0.00087  
(n=7,863) (0.00285)  (0.00294)  (0.00350)  (0.01243)  (0.01491)  (0.00727)  
Tomato -0.00260  -0.00304  -0.00251  -0.02802 ** 0.00606   -0.01581 ** 
(n=6,270) (0.00246)  (0.00240)  (0.00293)  (0.01156)  (0.01396)  (0.00652)  
Wheat 0.00516  *** 0.00617 *** 0.00503  ** 0.02770 *** 0.03279  *** -0.01076 ** 
(n=6,261) (0.00188)  (0.00189)  (0.00203)  (0.01035)  (0.01228)  (0.00543)  

 
Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All statistics are 
weighted by each crop’s total harvested hectares. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Figure 1. Temperature Distribution in Mexico, 1979-2010.  
 

 
Figure 2. Rainfall Distribution in Mexico, 1979-2010.  
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Figure 3. Estimated Impact of a Day in 12 Temperature Bins on Log Annual Mortality 
Rate, Relative to a Day in the 16°-18°C Bin 

 

 
 

Figure 4. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual Mortality 
Rate, Relative to a Day in the 6-8mm Bin 
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Figure 5. Estimated Impact of a Day in 12 Temperature Bins on Log Annual Fetal 
Mortality Rate, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 6. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual Fetal 

Mortality Rate, Relative to a day in the 6-8mm Bin 
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Figure 7. Estimated Impact of a Day in 12 Temperature Bins on Log Annual Infant 
Mortality Rate, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 8. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual Infant 

Mortality Rate, Relative to a Day in the 6-8mm Bin 
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Figure 9. Estimated Impact of a Day in 12 Temperature Bins on Log Annual Urban 
Mortality Rate, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 10. Estimated Impact of a Day in 12 Temperature Bins on Log Annual Rural 

Mortality Rate, Relative to a Day in the 16°-18°C Bin 
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Figure 11. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual urban 
Mortality Rate, Relative to a Day in the 6-8mm Bin 

 

 
Figure 12. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual Rural 

Mortality Rate, Relative to a Day in the 6-8mm Bin 
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Figure 13. Estimated Impact of a Growing-Season Day in 12 Temperature Bins on Log 
Annual Urban Mortality Rate, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 14. Estimated Impact of a Growing-Season Day in 12 Temperature Bins 

on Log Annual Rural Mortality Rate, Relative to a Day in the 16°-18°C Bin 
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Figure 15. Estimated Impact of a Growing-Season Day in 17 Precipitation Bins 
on Log Annual Urban Mortality Rate, Relative to a Day in the 6-8mm Bin 

 

 
Figure 16. Estimated Impact of a Growing-Season Day in 17 Precipitation Bins on Log 

Annual Rural Mortality Rate, Relative to a Day in the 6-8mm Bin 
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Figure 17. Estimated Impact of a Non-Growing-Season Day in 12 Temperature Bins 
on Log Annual Urban Mortality Rate, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 18. Estimated Impact of a Non-Growing-Season Day in 12 Temperature Bins 

on Log Annual Rural Mortality Rate, Relative to a Day in the 16°-18°C Bin 
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Figure 19. Estimated Impact of a Non-Growing-Season Day in 17 Precipitation Bins 
on Log Annual Urban Mortality Rate, Relative to a Day in the 6-8mm Bin 

 

 
Figure 20. Estimated Impact of a Non-Growing-Season Day in 17 Precipitation Bins 

on Log Annual Rural Mortality Rate, Relative to a Day in the 6-8mm Bin 
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Figure 21. Estimated Impact of a Day in 12 Temperature Bins on Log Annual 
Agricultural Output, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 22. Estimated Impact of a Growing-Season Day in 12 Temperature Bins 

on Log Annual Agricultural Output, Relative to a Day in the 16°-18°C Bin 
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Figure 23. Estimated Impact of a Non-Growing-Season Day in 12 Temperature Bins 
on Log Annual Agricultural Output, Relative to a Day in the 16°-18°C Bin 

 

 
Figure 24. Estimated Impact of a Day in 17 Precipitation Bins on Log Annual 

Agricultural Output, Relative to a Day in the 6-8mm Bin 
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Figure 25. Estimated Impact of a Growing-Season Day in 17 Precipitation Bins 
on Log Annual Agricultural Output, Relative to a Day in the 6-8mm Bin 

 

 
Figure 26. Estimated Impact of a Non-Growing-Season Day in 17 Precipitation Bins 

on Log Annual Agricultural Output, Relative to a Day in the 6-8mm Bin 
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