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Rigorous, objective evaluation of forest conservation policies in developing 
countries is needed to ensure that the limited financial, human, and political 
resources devoted to these policies are put to good use. Yet such evaluations 
remain uncommon. Recent advances in conservation best practices, the widening 
availability of high-resolution remotely sensed land-cover data, and the 
dissemination of geographic information system capacity have created significant 
opportunities to reverse this trend. This paper provides a nontechnical 
introduction and practical guide to a relatively low cost method that relies on 
remote sensing data to support ex-post analysis of forest conservation policies. It 
describes the defining features of this approach, catalogues and briefly reviews 
the studies that have used it, discusses the requisite data, explains the principal 
challenges to its use and the empirical strategies to overcome them, provides 
some practical guidance on modeling choices, and describes in detail two recent 
case studies. 

 

JEL codes: Q23, Q28, Q56, Q57 
 
Keywords: forest conservation policy; evaluation; literature review; reduced 
emissions from deforestation and degradation 
 

 

 

 

                                                 
1  Funding for this project was provided by the Inter-American Development Bank. I’m grateful to Leonardo 

Corral, Nancy McCarthy, Juha Siikämaki, and Paul Winters for helpful comments and suggestions. Remaining 
errors are my own. 

2 Resources for the Future, Washington, D.C. and Environment for Development Center for Central 
America.Turrialba, Costa Rica. blackman@rff.org 

 

mailto:blackman@rff.org


 
 

Table of Contents 

1. Introduction 4 

2. Empirical Approach 5 

2.1. Defining Characteristics 5 

2.2. Terminology 7  

3. Literature 7 

4. Data 14 

4.1. Outcome Variables 14 

4.2. Treatment Variables 14 

4.3. Control Variables 14 

4.4. Data Sources 15 

5. Evaluation Challenges 16 

5.1. Estimating Counterfactuals 26 

5.2. Challenges to Estimating Credible Counterfactuals 19 

6. Empirical Strategies 21 

6.1. Matching 22 

6.1.1. Propensity Score Matching 22 

6.1.2. Covariate Matching 23 

6.2. Regression 24 

6.2.1. Simple 24 

6.2.2. Instrumental Variables 25 

6.2.3. Fixed Effects 26 

6.3. Combining Matching and Regression 26 

7. Modeling Choices 27 

7.1. Data Assembly 27 

7.2. Unit of Analysis 27 

2 
 



 
 

7.3. Sampling in Plot- and Cell-level Analyses 29 

7.4. Study Area Definition 29 

7.5. Measuring and Correcting for Spillovers 30 

7.6. Empirical Strategy 30 

8. Examples 31 

8.1. Protected Areas in Costa Rica 31 

8.2. Protected Areas in Thailand 34 

9. Planning Ahead 36 

10. Conclusion 38 

References  39 

  

3 
 



 
 

1. Introduction 

According to United Nations Food and Agriculture Organization, the rate of deforestation in 

tropical countries remains “alarmingly high.” For example, in both Latin America and Africa, it 

averaged 0.5 percent per year over the past decade, five times the global rate (FAO, 2011). This 

deforestation, along with equally important forest degradation, has contributed to a host of local 

environmental problems, including biodiversity loss, soil erosion, and aquifer depletion, and has 

adversely affected some forest communities (Chomitz, 2007).  

Deforestation and degradation in developing countries also are a leading cause of climate 

change, arguably the most serious global environmental problem. Tropical deforestation 

accounts for a fifth to a quarter of total anthropogenic emissions of greenhouse gases (Houghton, 

2005; IPCC, 2007). As a result, policies aimed at reducing emissions from deforestation and 

degradation (REDD) and capturing attendant local environmental and socioeconomic co-benefits 

(REDD+) have attracted considerable attention.  

But even with the accelerating pace of investment in REDD+ activity, forest conservation 

policymakers in developing countries still have limited financial, human, and political resources. 

Therefore, it is important that their initiatives be effective and efficient. Ensuring that, in turn, 

requires objective, rigorous evaluations of the extent to which forest conservation policies 

achieve their aims. Such evaluations allow stakeholders to modify existing policies and shape 

future ones to maximize “bang for the buck.”  

Until recently, however, objective, rigorous evaluations were uncommon, for at least two 

reasons. One is that historically, the demand for rigorous evaluation of forest conservation policy 

has been limited (Ferraro and Pattanayak, 2006; Millennium Ecosystem Assessment, 2005). 

Second, collecting and analyzing the requisite data have been costly. Customarily, evaluations of 

forest conservation policies have relied on expensive field measurements. Over the past two 

decades, however, publicly available, high-resolution remotely sensed (mostly satellite) data on 

deforestation and degradation—along with the geographic information system (GIS) capacity 

needed to analyze the data—have dramatically reduced evaluation costs. These advances in 

conservation best practices, data availability, and GIS capacity have created significant new 

opportunities to enhance our understanding of the effectiveness and efficiency of forest 

conservation policy.  
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The objective of this paper is to provide a nontechnical introduction and practical guide 

to the rigorous ex post evaluation of forest conservation policies using remotely sensed data. The 

principal target audiences are forest conservation policymakers, practitioners, and academics 

with limited exposure to this method.   

 
2. Empirical Approach 

This section describes the broad empirical approach to using remotely sensed data for evaluating 

conservation efforts, including the defining characteristics and associated terminology. 

2.1. Defining Characteristics 

The approach to evaluating forest conservation policy discussed in this paper—which for 

convenience we refer to as spatial evaluation—has five defining characteristics.  

(i) Land-cover Change Effects. The goal of the analysis is to measure the causal effect of a 

forest conservation policy on land-cover change, including deforestation, which, as noted 

above, triggers an array of local and global environmental problems (Chomitz, 2007).  Note 

that similar techniques can be used to measure the causal effects of such policies on the 

socioeconomic status of local communities (e.g., Sims, 2010; Ferraro and Hanauer, 2011). 

However, we limit the scope of this paper to the analysis of land-cover change effects. 

(ii) Remote Sensing Data. Remote sensing data are used to measure land-cover change. Such 

data are derived from sensors aboard aircraft or satellites, including passive sensors such as 

conventional cameras that detect reflected natural sunlight and other electromagnetic 

radiation and active sensors such as RADAR and LiDAR that emit and detect artificial 

radiation. Passive satellite sensors are most commonly used.  

(iii) Spatial Variation. Causal effects are measured by analyzing spatial variation in (i) land-

cover change (some areas are deforested and others are not); (ii) forest conservation policies 

(some areas are subject to the policy and others are not), and (iii) other geophysical and 

socioeconomic drivers of land-cover change (some areas are closer to cities, others are 

farther; some have high rainfall, some do not, etc.). When panel data are available, both 

temporal and spatial variation may be analyzed.  

(iv) Geographic Information System. Relational data derived from a geographic information 

system (GIS) is used to analyze spatial (and sometimes temporal) variation. The GIS is 

5 
 



 
 

constructed by collecting, georeferencing, and compiling spatial data on the three categories 

of variables just mentioned. The unit of analysis in the relational database is defined by the 

evaluator. It can be a pixel, or “plot” in the land-cover change map (typically, a 30m2 cell for 

maps derived from Landsat images); a cell in a user-defined grid (e.g., a 2km2 cell); or an 

administrative unit (e.g., a county or township). (The advantages and disadvantages of each 

option are discussed in Section 7.2). Each unit in the GIS—or a subsample of these units—

represents a single observation in the relational database that has all the data contained in the 

various layers of the GIS. Figure 1 illustrates the data framework in the case of a cell-level 

relational database.  

 

Figure 1. Data Framework 

 

Source: Chomitz and Gray, 1995 

(v)Secondary Data. Aside from possibly classifying raw remote sensing images, the evaluations 

described in this document rely solely on secondary data collected from statistical and 

geospatial data agencies and other sources (discussed in Section 4). This feature of the 

method makes it relatively inexpensive and quick to implement. Although studies such as 

Arriagada et al. and Sierra and Russman (2006), which combine secondary data with survey 

data and other field measurements, are quite useful, we will focus on studies that use simpler, 
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less expensive methods that are likely to be more realistic for evaluators with limited 

resources.    

2.2. Terminology 

Given those defining characteristics, the type of empirical study described in this paper amounts 

to a statistical analysis of relational data. In discussing these data, we will rely on the 

terminology used in the project evaluation literature. The unit of analysis is a spatial entity, such 

as a plot, cell, or administrative division. The treatment variable measures the extent to which the 

unit was exposed to the forest conservation policy. The outcome variable measures land-cover 

change on that unit. The control variables measure other drivers of land-cover change, such as 

soil quality and travel time to population centers. For example, Blackman et al. (2011) aim to 

measure the effect on deforestation of Mexican protected areas created prior to 1993. To do that, 

the authors construct a GIS comprising spatial data on 1993–2000 land-cover change (derived 

from Landsat satellite images), the location of protected areas, and six other drivers of land-cover 

change—elevation, slope, rainfall, soil quality, travel time to population centers, land tenure, and 

indigenous population. Their unit of analysis is a 30m2 plot. They use the GIS to create a 

relational database of a sample of such plots, each of which includes all the information in the 

various layers of the GIS. In their statistical analysis, the outcome variable is a dichotomous 

dummy indicating whether the plot was deforested between 1993 and 2000. The treatment 

variable is a dichotomous dummy indicating whether the plot was located in a pre-1993 

protected area. The control variables are the other drivers of land-cover change listed above.  

 

3. Literature 

Tables 1–3 summarize the salient features of the studies that have used the broad empirical 

approach described above, including study area, treatment, specific empirical approach, methods 

used to control for spillovers (if any), methods used to construct the sample, land-cover data 

(years, resolution, and land-cover categories), and control variables. Each table summarizes 

studies using a different unit of analysis: the plot (Tables 1A and 1B), the polygon (Table 2), and 

the cell (Table 3). We reference these tables in the remainder of this paper.  
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4. Data 

This section provides an overview of the data typically used to analyze forest conservation 

policies using the approach described in this paper.  

4.1. Outcome Variables 

As noted above, a defining feature of the spatial evaluation method described here is reliance on 

land cover and land-cover change maps derived from remote sensing images. An entire 

discipline focuses on the science of generating such maps, and the associated literature is vast. 

The review by Fagan and DeFries (2009) is good entry point. Depending on the unit of analysis, 

various types of outcome variables are used. Plot-level analyses typically use dichotomous 

variables indicating whether or not the plot was cleared during the study period. They also use 

categorical variables indicating the specific land cover substituted for forest. Cell- or 

administrative unit-level analyses typically rely on continuous variables indicating the 

percentage cleared. 

4.2. Treatment Variables 

Only a handful of polices have been analyzed. The bulk of the studies examine protected areas. 

Other treatments examined include payments for environmental services, tenure reform, 

agricultural intensification programs, and land-use zoning (Tables 1-3, column 3). As in the case 

of outcome variables, depending on the unit of analysis, various types of treatment variables are 

used. Plot-level analyses typically use dichotomous variables indicating whether or not the plot 

was treated during the study period while cell- or administrative unit-level analyses usually rely 

on continuous variables indicating the percentage of the cell or unit that was treated. For 

example, a plot-level analysis of the effect of protected areas on land cover change might use a 

dichotomous variable indicating whether or not the plot was located inside a protected area while 

a cell-level analysis might use a continuous variable indicating the percentage of the cell that was 

inside a protected area.  

4.3. Control Variables 

The following geophysical, institutional, and socioeconomic characteristics of land units have 

been used to control for the effects of drivers of land-cover change other than forest conservation 

policies (Table 1-3, column 10).  
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(i) Geophysical Characteristics. The following variables are most commonly used: terrain 

characteristics including elevation, slope, and aspect (directional orientation); climate 

measures including precipitation, temperature, proximity (Euclidian distances or travel times) 

to roads, population centers, markets, forest edges, processing facilities (dairy, sawmill, etc.); 

soil characteristics; and ecoregion. In addition, a few studies have included flood hazard, 

watershed or irrigated area. 

(ii) Socioeconomic Characteristics. Socioeconomic variables are often omitted from spatial 

evaluations of forest conservation policies, presumably because they may be endogenous—

that is, because they may be influenced by the outcome variable or pick up the effects of 

unobserved drivers of land-cover change. When studies do include these variables, they tend 

to use either lagged values or instrumental variables (discussed in Section 6.2.2) to control 

for potential endogeneity (e.g., Cropper et al., 2001; Deininger and Minten, 2002). 

Socioeconomic control variables have included: population density, poverty, and indigenous 

population. 

(iii)Administrative Unit. Variables that indicate the administrative unit (province, county, 

regulatory region) for each unit of analysis are included in some studies (e.g., Blackman et 

al., 2011; Cropper et al., 2001; Sims, 2010). These “fixed effects” can pick up the influence 

of unobserved variables that are correlated with administrative units (see Section 6.2.3). 

(iv) Spatial Lags. Finally, spatial lag variables, which measure average levels of geophysical 

characteristics on neighboring land units, have been incorporated in a few regression 

analyses (Cropper et al., 2001; Müller and Munroe, 2005; Nelson et al., 2001). Such 

variables include slope and elevation. 

4.4. Data Sources 

Typically, data on outcomes—that is, land cover and land-cover change maps—are the most 

difficult to acquire. Increasingly, however, data needed to construct outcome, treatment, and 

control variables are publicly available, often on the Internet. This section lists a number of 

publicly available sources for such data.  

(i) Forest Conservation Policies. Global data on protected areas are available from the UN 

Environment Programme World Database on Protected Areas (UNEP-WCMC, 2007). 

(ii) Geophysical Characteristics. Terrain (elevation, slope, and aspect) data are available from 

NASA Shuttle Radar Topography Mission digital terrain elevation maps (Farr et al., 2007). 
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Location of population centers is available from gridded global population maps, such as 

Gridded Population of the World (CIESIN, 2005) and LandScan global population data 

(Dobson et al, 2003). Soils data are available from the UN Food and Agriculture 

Organization (FAO, 2003). Precipitation data are available from WorldClim (Hijmans et al., 

2005). And ecological zone data are available from FAO and the World Wide Fund for 

Nature (Fischer et al., 2002; Olson et al., 2001). Travel times to population centers generally 

must be estimated using standard iterative routines in ArcGIS that take into account terrain 

and road characteristics. 

(iii)Socioeconomic Characteristics. Spatial data on socioeconomic characteristics are available 

on a case-by-case basis, mostly from census records maintained by statistical agencies. 

(iv) Administrative Unit. Data on administrative boundaries are available from a variety of 

sources, including metasources such as Gridded Population of the World (CIESIN, 2005).  

 
5. Evaluation Challenges 

This section discusses the main challenges to evaluating forest conservation policy using the 

broad approach outlined above.  

5.1. Estimating Counterfactuals 

The overarching challenge in evaluating forest conservation policy is the same as in the 

evaluation of any type of policy intervention, such as an antimalarial vaccination program. 

Ideally, for each unit of analysis (hectare, person), the causal effect of the policy (protected area, 

vaccine) would be measured by comparing the outcome (land-cover change, health status) with 

the treatment and without it. However, we never actually observe both. For treated units, we 

observe the outcome with treatment, but not without it. And for untreated units, we observe the 

outcome without treatment, but not with it. In each case, the unobserved outcome is the 

counterfactual. The overarching challenge in evaluating the policy is that counterfactual 

outcomes are (by definition) not observed and therefore must be estimated. Generally, this 

problem is simplified by focusing only on treated units. Hence, causal effects of the policy are 

measured as the difference between (i) the average outcomes with treatment, which are observed, 

and (ii) the average outcomes without treatment, which are estimated. In policy evaluation 

terminology, this effect is known as the average treatment effect on the treated (ATT).  
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Unfortunately, the three broad strategies most commonly used to estimate conservation 

policy counterfactuals are flawed and prone—if not likely—to generate biased results.3 In what 

follows, we first define each strategy and then explain why it is problematic. 

(i) Pretreatment Outcomes for Treated Units. A common approach to estimating counterfactuals 

for treated units is to use observed outcomes for these units before treatment (e.g., Liu et al., 

2001; Gaveau et al., 2009). The causal effect of the policy is measured as the difference in 

average outcomes before treatment and after treatment. That is, the estimate of the effect is 

based on a before-and-after comparison. For example, say the unit of analysis is a 30m2 plot, 

the treatment is the creation in 2004 of a protected area on a subset of plots in a study area, 

the outcome is the deforestation rate, and the outcome period is 2005-2010. Deforestation 

rates on plots in the protected area prior to the establishment of the protected area, say from 

1998-2003, would be used to estimate missing counterfactuals—that is, what 2005-2010 

deforestation rates on these plots would have been had they not been protected. The causal 

effect of the policy would be measured as the difference between the average deforestation 

rate for protected plots over the period 1998-2003 and the average rate over the period 2005-

2010. This empirical strategy depends on the assumption that any and all changes in the 

outcome variable during the study period are attributable to treatment.  

(ii) Untreated Outcomes. A second common approach to estimating counterfactuals for treated 

units is to use outcomes for untreated units during the outcome period (e.g., DeFries et al., 

2005; Olivera et al., 2007). The causal effect of the policy is measured as the difference in 

the average outcome for treated units and for untreated units during the (same) outcome 

period. That is, the estimate of the effect is based on a with-and-without comparison. 

Continuing the above example, 2005-2010 rates of deforestation on plots outside the 

protected area would be used to proxy for the missing counterfactual. The causal effect of the 

policy would be measured as the difference between the average 2005-2010 deforestation 

rate for protected plots and the average 2005-2010 deforestation rate for unprotected plots. 

This empirical strategy depends on the  assumption that, aside from being subjected to the 

treatment, there are no systematic differences between the treated and untreated units that 

affect outcomes.   

                                                 
3 See Joppa and Pfaff (2010b) for a detailed review of the literature on protected area evaluation. 
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(iii) Changes in Untreated Outcomes. A third common approach to estimating counterfactuals 

for treated units is to use changes in outcomes for untreated units during an outcome period 

that starts before treatment is implemented and ends afterwards (e.g., Honey Roses et al., 

2011). The causal effect of the policy is measured as the difference in the changes in average 

outcomes for treated units and untreated units during the outcome period. That is, the effect 

is measured using a “difference-in-differences” comparison (known in natural sciences as a 

“before-after-control-impact” comparison) that essentially combines the two approaches 

described above. Continuing the above example, the measure of interest would be the change 

in deforestation rates between 1998-2003 and 2005-2010. The change during this period  on 

plots outside the protected area would be used to proxy for the missing counterfactual. The 

causal effect of the policy would be measured as the difference between changes for 

protected and unprotected plots. This empirical strategy depends on the assumption that, 

were it not for the treatment, outcomes on the treatment and control plots would exhibit the 

same trend over time. 

(iv) Outcomes in Nearby Areas. As discussed below, a problem with using outcomes for 

untreated units to proxy for the counterfactual is that these units may be different from 

treated units in ways that affect the outcome. For example, they may be closer to or farther 

away from urban sprawl. A common approach to addressing this problem is to use outcomes 

for treated units located near the treated units (Mas, 2005; Nagendra et al., 2008). The causal 

effect of the policy is measured as the difference in average outcomes for treated units and 

for nearby untreated units during the same outcome period. That is, the estimate of the effect 

is based on another type of with-and-without comparison. Continuing the above example 

once again, 2005–2010 deforestation on plots in a 10km buffer zone outside the protected 

area would be used to proxy for the missing counterfactual. The causal effect of the policy 

would be measured as the difference between the average 2005-2010 deforestation rate for 

protected plots and the average 2005-2010 deforestation rate for unprotected plots in a 10km 

buffer. This empirical strategy also depends on the assumption that, aside from being 

subjected to the treatment—here, being adjacent to a policy area—there are no systematic 

differences between the treated and untreated units that might affect outcomes. 
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5.2. Challenges to Estimating Credible Counterfactuals 

In evaluating forest conservation policies, three factors complicate the task of estimating the 

missing counterfactual for treated units. 

(i) Exogenous Temporal Variation in Deforestation and Degradation. Rates of deforestation and 

degradation vary over time for reasons that have little or nothing to do with conservation 

policies, including changing macroeconomic conditions, demographics, technology, climate, 

and ecology. Evaluations based on before-after comparisons that do not control for these 

exogenous factors will conflate their effects with those of the conservation policy. 

(ii) Nonrandom Siting of Forest Conservation  Policies. The areas targeted by forest 

conservation policies are generally not randomly located. Rather, to minimize 

implementation costs and/or conflicts with economic development, they are often sited in 

relatively remote areas where competition for land is limited and deforestation rates are low 

to begin with (Joppa and Pfaff, 2009; Millennium Ecosystem Assessment, 2005). In other 

cases, they are areas with particular ecological characteristics that protect biodiversity or 

ecosystem services. Evaluations that do not control for this nonrandom siting will conflate its 

effects with those of the conservation policy itself. 

(iii) Spillovers. Conservation policies targeting one set of land plots can affect land use on 

neighboring plots, a phenomenon known as spillover. Spillovers can be either negative (i.e., 

conservation policies exacerbate deforestation and/or degradation on neighboring plots) or 

positive (i.e., conservation policies stem deforestation and/or degradation on neighboring 

plots). Negative spillovers can occur for several reasons (Alix-Garcia et al. Forthcoming). 

First, policies such as legal protections that inhibit deforestation and degradation on one plot 

may displace it to neighboring plots, an effect known as substitution. For example, the 

creation of a well-enforced protected area may cause shifting agriculture, logging, and 

fuelwood collection to migrate to neighboring areas. Second, policies that dampen the supply 

of timber or nontimber forest products on one set of plots may reduce market supply of these 

products, which increases their prices in local markets. That, in turn, spurs increased 

production on neighboring plots, an effect known as price slippage. Finally, conservation 

policies that increase wealth on one set of plots can cause them either to expand production 

on neighboring plots or to increase their demand for forest products, a phenomenon known as 

a wealth effect. Conservation policies can also generate positive spillovers—that is, they may 
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stem deforestation and/or degradation on neighboring plots. This can occur if they spur 

private conservation measures (e.g., from ecotourism) or improve regulatory monitoring and 

enforcement of land-use restrictions in neighboring areas. In any case, evaluations that do not 

control for spillovers may either overestimate or underestimate the net effect of conservation 

policies.  

It is easy to see how those three complications—exogenous temporal variation in 

deforestation and degradation, nonrandom siting, and spillovers—could seriously bias the 

results of evaluations that rely on the three strategies discussed above for estimating 

counterfactuals. We will consider each strategy in turn.  

(iv) Pretreatment Outcomes for Treated Units. Evaluations that rely on pretreatment outcomes 

for treated units to estimate the counterfactual are undermined when outcomes change over 

time because of exogenous factors. Continuing with the example above, say a study of the 

effectiveness of a protected area that was created in 2004 estimates the counterfactual as the 

1998–2003 rate of deforestation on protected plots. Further, say a leading cause of 

deforestation in the study area is conversion to pasture and that deforestation declined 

precipitously between 2005 and 2010 because of a crash in the market for cattle. Hence, the 

average post treatment (2005-2010) rate of deforestation was much lower than the average 

pretreatment (1998-2003) for reasons unrelated to the protected area. The study would 

erroneously attribute this decline in deforestation rates to the protected area, thereby 

significantly overestimating its causal effect.  

(v) Untreated Outcomes. Evaluations that use outcomes on untreated units to estimate the 

counterfactual are undermined when the conservation policy is nonrandomly sited. The 

general technical term for this problem is selection bias, which refers to nonrandom selection 

of units into the treatment. Continuing with our protected area example, say the protected 

area was sited in a remote location with minimal economic activity or deforestation. As a 

result, the deforestation rate for treated units is much lower than untreated units for reasons 

that have nothing to do with the legal protections afforded by the policy. The study would 

erroneously attribute this difference in deforestation rates to the protected area, thereby 

significantly overestimating its causal effect.  

(vi)  Changes in Untreated Outcomes. Evaluations that use the before-after change in outcomes 

on untreated units to estimate the counterfactual also are undermined when the conservation 
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policy is nonrandomly sited. Continuing with our protected area example, say the protected 

area was sited in a remote location with minimal economic activity or deforestation. As a 

result, the before-after change in the deforestation rate for treated units is much lower than 

for untreated units for reasons that have nothing to do with the legal protections afforded by 

the policy. The study would erroneously attribute this difference to the protected area, 

thereby significantly overestimating its causal effect.  

(vii) Outcomes in Nearby Areas. Evaluations that use outcomes on untreated units close to treated 

units to estimate the counterfactual are undermined when the conservation policy spurs 

spillovers. Continuing with our protected area example, say the protected area displaces 

illegal logging to adjacent areas. As a result, the average deforestation rate for treated units is 

much lower than that on nearby untreated units. The study would erroneously attribute the 

entire difference in deforestation rates to the conservation policy without taking into account 

that the policy was responsible for spurring deforestation in nearby areas as well as stemming 

it inside the protected area. As a result, the study would significantly overestimate the 

policy’s causal effect.  

 
6. Empirical Strategies 

In the literature on ex post evaluation of forest conservation policies, two empirical strategies 

have been used to address the evaluation challenges discussed above: matching and regression 

analysis. These are often referred to as quasi-experimental methods because they mimic the 

result of a experiment in which the treatment is randomly assigned in order to avoid selection 

bias. Although a detailed treatment of these methods is beyond the scope of this document, we 

briefly describe each below, paying particular attention to those aspects most relevant to the 

evaluation of forest conservation policy, and providing citations for readers interested in details.  

6.1. Matching 

The guiding principle in matching is constructing a counterfactual for the treatment units—that 

is, an estimate of what the deforestation rate on these units would have been absent the 

conservation policy—using the deforestation rate on “matched” control units that have not been 

subjected to the policy but that are otherwise very “similar”—specifically, similar in terms of 

confounding variables that affect both selection into the treatment (i.e., policymakers’ choices 

about which land units to target for conservation) and the outcome (land-cover change) 
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(Caliendo and Kopeinig, 2008; Morgan and Harding, 2006). For example, say the treatment in 

question is a protected area and the outcome is the rate of deforestation during a defined study 

period. Furthermore, say policymakers tend to choose remote, high-elevation plots for legal 

protection, and such plots also tend to have relatively low deforestation rates. Matching requires 

identifying remote, high-elevation unprotected plots to serve as matched controls. Once matched 

control sites have been identified, the effect of the conservation policy is estimated as the 

difference between the average deforestation rates on treatment sites and on matched control 

sites. Technically, this difference is the average treatment effect on the treated—the ATT. A 

similar method can be used to account for leakage. It is estimated as the difference between the 

average deforestation rate on sites adjacent to treatment sites and a second set of matched control 

sites not adjacent to these sites.  

Ideally, one would find matched control units that have the exact same observable 

characteristics (e.g., distance to cities, elevation, soil quality) as treatment units. However, when 

the number of treated units and the number of observable characteristics are large, this may not 

be possible. For example, if data on land units include 30 variables, for every treatment unit, it 

may not be possible to find a control unit with the exact same configuration of these 30 variables. 

Two approaches are available for circumventing this problem. Both collapse the difficult 

problem of matching all observable characteristics to a much simpler one of matching a single 

index of these characteristics.  

6.1.1. Propensity Score Matching 

Propensity score matching (PSM) pairs treatment and control units based on their propensity 

score—the probability of the unit’s being treated, as predicted by a dichotomous choice (usually 

probit or logit) regression model. Propensity scores can be interpreted as an index of the 

characteristics of the unit of analysis (plot, cell, administrative unit) weighted by their 

importance in predicting treatment (Rosenbaum and Rubin, 1983).  

In practice, PSM entails several steps. First, a dichotomous choice regression model is 

estimated that explains which units were treated on the basis of their observable characteristics. 

The regressors should include control variables that affect both selection into the treatment (the 

policymaker’s choice about which units of analysis to target for the conservation policy) and the 

outcome (land-cover change). In addition, these variables should be unaffected by selection into 

the treatment or anticipation of it (Caliendo and Kopeinig, 2008). Next, the estimated 
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coefficients from this first-stage regression model are used to generate propensity scores for each 

treatment unit and each control unit, and the propensity scores are used to match treatment units 

with control units. Finally, the effect of the treatment is estimated as the difference in the average 

outcome for the treated and matched control units. A difference-in-means test is used to 

determine whether this average treatment effect on the treated is statistically significant.  

Various methods are available to match treatment and control units based on propensity 

scores (Caliendo and Kopeinig, 2008; Morgan and Harding, 2006). The most straightforward is 

nearest neighbor 1-to-1 matching, wherein each treated unit is matched to the untreated unit with 

the closest propensity score. An alternative is nearest neighbor 1-to-n matching, wherein each 

treated unit is matched to the n untreated units with the closest propensity scores and the 

counterfactual outcome is the average of the outcomes for these n units. Another alternative is 

kernel matching, wherein a weighted average of all untreated units is used to construct the 

counterfactual outcome. The weights are based on similarity as measured by propensity scores.  

In theory, standard errors of PSM estimators are potentially biased because, among other 

things, they do not take into variation stemming from the estimation of propensity scores 

(Caliendo and Kopeinig, 2008; Heckman et al., 1998). A common solution is to calculate PSM 

standard errors by bootstrapping, an iterative technique that entails repeated resampling. 

However, recent work has demonstrated that this approach also generates biased standard errors 

in the case of 1-to-n nearest neighbor matching estimators (Abadie and Imbens, 2008). As a 

result, the matching literature increasingly relies on covariate matching, for which methods are 

available to calculate unbiased standard errors (Abadie and Imbens, 2006; Table 1A).  

The effectiveness of matching in controlling for the nonrandom siting of conservation 

policies depends on the untestable assumption that the first-stage regression includes all 

confounding variables that affect both selection into the treatment and the land-cover change. 

Sensitivity analysis (e.g., Rosenbaum bounds) can be used to test the extent to which a violation 

of this assumption is likely to drive matching results (Caliendo and Kopeinig, 2008; Rosenbaum, 

2002).  

6.1.2. Covariate Matching 

As noted above, propensity scores can be interpreted as an index of similarity between two land 

units that have several relevant observable characteristics. In more general and technical terms, it 

can be seen as a scale-invariant measure of the distance between two points in multidimensional 
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space. Covariate matching uses alternative measures of such distances, the most common of 

which is Mahalanobis distance (Abadie and Imbens, 2011).  

As in the case of PSM, in practical terms, covariate matching entails first pairing 

treatment and control observations and then estimating treatment effects as the difference in the 

average outcome for the treatment units and matched control units. And as in the case of PSM, a 

variety of methods are available to match treatment and control units, including 1-to-1, 1-to-n, 

and kernel matching. As noted above, methods are available to calculate unbiased estimates of 

standard errors from covariate matching (Abadie and Imbens, 2006).  

6.2. Regression 

6.2.1. Simple 

Early evaluations of conservation policies using the broad empirical approach discussed in this 

paper relied on relatively simple regression analysis (Table 1B). The dependent variable is a 

measure or index of land cover or land-cover change, the key independent variable is a 

dichotomous treatment dummy that indicates whether the unit was treated, and additional 

independent variables are controls. Specifications include probit and logit models when the 

dependent variable is dichotomous (deforested versus no change) and multinomial logits when 

the dependent variable is polychotomous (e.g., pasture, row agriculture, forest).  

For example, Deininger and Minten (2002) examine the effect of protected areas (among 

other policies) on land-cover change in southern Mexico between 1980 and 1993. They use a 

plot-level probit model in which the dependent variable is a dichotomous dummy that indicates 

whether the plot was cleared during this period, a independent treatment dummy indicates 

whether the plot was in a protected area, and controls measure plot characteristics that affect 

land-cover change, including elevation, slope, rainfall, soil characteristics, distance to roads, 

distance to population centers, population density, poverty, indigenous population, and access to 

credit. The magnitude and significance of the marginal effect on the protection dummy is used to 

measure the effect of protected areas on deforestation. 

A weakness of this approach is that it generates biased treatment effect estimates if the 

treatment dummy picks up unobserved factors that influence the outcome, namely nonrandom 

siting of protected areas. That is, the treatment dummy may be endogenous. Such methods also 

generate biased results if a significant portion of the control units are not similar to the treated 
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units in terms of characteristics that affect the outcome (Ho et al., 2007; Morgan and Winship, 

2007).  

To be fair, the main aim of many studies that use a simple regression approach is not to 

evaluate a forest conservation policy but to identify the drivers of land-cover change, among 

which is forest conservation policies. Studies that focus specifically on evaluating the effect of 

conservation policies tend to use other methods that generate more reliable treatment effect 

estimates.  

6.2.2. Instrumental Variables 

The instrumental variable (IV) method takes advantage of known correlations between the 

treatment (exposure to a conservation policy) and instruments, which are characteristics of 

treated units that plausibly affect the probability of treatment but do not directly affect outcomes 

(Morgan and Winship, 2007; Wooldridge, 2009). In the context of forest conservation policy 

evaluation, instruments do not affect land-cover change except through the probability of 

treatment. For example, if conservation policies tend to target areas close to rivers to ensure the 

continued provision of hydrological services, and this locational characteristic has little or no 

direct effect on land-cover change, proximity to rivers or location in a priority watershed might 

have use as an instrument (e.g., Cropper et al., 2001; Sims, 2010). In any case, instruments can 

be used to control for nonrandom siting of conservation polices.  

In practice, the IV approach entails several steps: identifying an instrument or set of 

instruments; estimating a first-stage regression, wherein the treatment is the dependent variable, 

and the instrument (or set of instruments) along with the other variables are independent 

variables; using this first-stage regression to predict values of the treatment dummy; using these 

predictions to substitute for the treatment variable in a second-stage land-cover change 

regression; and finally correcting the standard errors to account for the fact that the treatment 

variable is estimated rather than measured. This can be done using a sequential procedure in 

which each stage is estimated separately or one in which both stages are estimated 

simultaneously using maximum likelihood.  

A drawback of the IV approach is that credible instruments are not easy to identify. A 

second limitation is that this method measures only the effect of the conservation policy on the 

subset of units for which siting was affected by the instrument. As a result, this method estimates 

an effect of the conservation policy—technically, a local average treatment effect—that is 
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conceptually different from estimates derived through other methods (Morgan and Winship, 

2007).  

6.2.3. Fixed Effects 

A second approach to controlling for the nonrandom siting of conservation policies is to use 

fixed effects—dummy variables that aim to pick up the effect of unobserved confounding 

variables that vary within (but not across) the unit of analysis chosen for that fixed effect. Fixed 

effects are practical when the analysis uses panel data. Typically, the fixed effects match the 

level of analysis. For example, Sims (2010) estimates fixed effects models to measure the effect 

of protected areas on land-cover change in Thailand using locality-level (i.e., township level) 

panel data covering four consecutive multi-year periods between 1967 and 2000. Her fixed 

effects are at the locality-level, that is, she includes in her regression model a separate dummy 

variable for each of the more than 4000 localities in her data set. In a plot-level analysis with tens 

of thousands of plots, however, plot-level fixed effects may not be feasible. An option is to 

include fixed effects at a lower level of spatial resolution—for example, at the township level. 

 

6.3. Combining Matching and Regression 

As discussed above, matching can be used to generate treatment effect estimates by calculating 

the difference between average outcome for the treated observations and matched control 

observations, and then testing for statistical significance. But matching can also be used to 

“preprocess” data to reduce or ideally completely remove selection bias, and then use a 

parametric regression model—including, for example, an ordinary least squares, probit, duration, 

or difference-in-differences regression—to estimate the treatment effect (Caliendo and Kopeinig, 

2008; Ho et al., 2007). In practice, this approach entails matching treatment and control 

observations, dropping unmatched observations from the data set, and then running the 

parametric regression. Hence, matching can be combined with common parametric techniques to 

analyze a wide variety of data and problems. Several of the conservation policy evaluations 

summarized in Tables 1-3 use this approach (e.g., Alix-Garcia et al., Forthcoming, and Honey-

Roses et al., 2011).  
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7. Modeling Choices 

This section provides some brief guidance on the modeling choices that need to be made in 

spatial forest conservation evaluations.  

7.1. Data Assembly 

It probably goes without saying that having high-quality geospatial data is a necessary condition 

for a high-quality spatial forest conservation policy evaluation. Although these data will 

inevitably be less than ideal, it is helpful to characterize the ideal.  

(i) Land-cover Data. Ideally, the cross-sectional land-cover maps used to estimate land-cover 

change would be based on compatible classification strategies, to ensure that the maps are 

comparable. They would have a fine resolution so as to be able to pick up small-scale, 

fragmented land-cover change (the standard are maps created from Landsat imagery, which 

typically have a resolution of 30m2). In addition, they would measure forest degradation, 

which is the predominant type of land-cover change in some areas, as well as clearing. 

Finally, they would cover a period before and after the start of the policy’s implementation. 

Such panel data facilitate measurement of treatment effects based on panel data approaches, 

which are widely seen as more reliable and credible than cross-sectional methods.  

(ii) Data on Land Characteristics. Ideally, this information also would be high-resolution panel 

data. Probably more important, as discussed in Section 6.1, one would measure or proxy for 

all the important observable confounding factors that affect both selection into the treatment 

(the policymaker’s choice of which units of analysis to target for the conservation policy) and 

the outcome (land-cover change). Toward that end, it is important to develop an 

understanding of the factors that that drove land cover change and the siting of the 

conservation policy. Such an understanding can help determine what observable confounding 

factors should be included in the analysis. For example, if protected areas were intentionally 

sited in high biodiversity locations, it would be important to include a measure of 

biodiversity. An understanding of the siting of the policy also can help identify instrumental 

variables and potential biases due to omitted variables.   

7.2. Unit of Analysis 

As discussed in Section 2.1, evaluators must choose a plot, cell, or administrative division as the 

unit of analysis. Each has advantages and disadvantages.  
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In principle, the unit of analysis should comport with the decision making processes 

being analyzed. For example, in most programs involving payment for ecosystem services 

(PES), participants are land managers who decide whether to participate and also whether to 

clear tree cover on their land. In such cases, the level of analysis should be the land manager. 

Among other advantages, this approach would facilitate the use of land manager-level control 

variables (e.g., household size, education).  

Unfortunately, however, in many developing countries digital cadastral data (shape files) 

defining the land management units—particularly those not subjected to the policy—are hard to 

come by. For example, for a study of a PES program, digitized data on participating land 

management units are typically collected by the agency administering the program and are 

publicly available. Data on land management units not participating in the program, however, are 

less likely to be available. A plot- or cell-level study would circumvent this problem.  

Another advantage of a plot-level analysis is that it simplifies the definition of the control 

variables based on high-resolution data. For example, say the data in question describe slope, 

elevation, and aspect. Each of these variables takes a single value at the plot level (provided plots 

are relatively small compared with the digital elevation map) but many more values at the cell or 

administrative division level, in which case summary statistics (mean, median, maximum, 

minimum, or variance) must be used to create a single value for the entire unit. These summary 

statistics may introduce aggregation bias. That is, they may be too coarse to capture correlations 

with treatment and outcome variables. The same problem arises with distance and travel time 

variables.  

An advantage of using cells or administrative divisions as units of analysis is that they 

facilitate the use of ordinary least squares regression techniques (because the dependent variable 

is the percentage of the cell or administrative division cleared), which are relatively well 

understood, simple, and flexible and impose a minimal computational burden.  

An advantage of using administrative divisions is that data on control variables may be 

easily obtained at the same level. For example, census data are often available at the county 

level.  

Finally, a disadvantage of using administrative divisions as the unit of analysis is that 

their boundaries and size may depend on factors that affect outcomes. For example, 

administrative units are often subdivided because of population growth, and as a result, smaller 
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units tend to be more densely populated. Depending on the methods used, such correlations can 

bias estimates of treatment effects.  

7.3. Sampling in Plot- and Cell-level Analyses 

Plot- and cell-level analyses typically use a subsample of the population of plots in a land-cover 

or land-cover change map for the actual empirical analysis (Tables 1 and 3, column 6). One 

reason is that using the population of plots or cells in a map that has a high spatial resolution 

and/or a broad geographic scope often generates data sets so large as to be computationally 

impractical. Sampling circumvents the problem. In addition, sampling can be used to create a 

data set with plots or cells separated by more than a minimum distance, a feature that can reduce 

or even eliminate bias due to spatial spillovers.  

Two methods have been used to generate subsamples. One is to randomly select them 

using a function in ArcGIS, sometimes eliminating plots that are less than a minimum distance 

from each other to reduce bias from possible spatial spillovers (e.g., Andam et al., 2008; Nelson 

and Chomitz, 2011). An alternative, used in plot-level analyses, is to overlay a rectangular grid 

on the land-cover map and select those plots where gridlines cross (Table 1A). For example, 

Blackman et al. (2011) use a 2km grid, and Müller and Munroe (2005) use a 200m grid. 

Typically, the definition of the sample used in the plot-level empirical analysis entails a 

second step—dropping all plots that were not forested in an initial period (e.g., Blackman et al., 

2011; Andam et al., 2008; Deininger and Minten, 2002; Robalino et al., 2008). The purpose is to 

more accurately identify the effect of the policy in stemming forest cover loss.    

7.4. Study Area Definition 

In defining a study area, it is important to keep in mind that the evaluation approach described 

here measures the causal effects of a forest conservation policy by analyzing spatial variation in 

land cover change, the policy, and other geophysical and socioeconomic drivers of land cover 

change. Therefore, the study area must be large enough encompass significant variation in these 

factors. To be more precise, it must encompass both untreated areas that are similar to treated 

areas (in terms of characteristics affecting land cover change) and untreated areas that are 

dissimilar. When that is not possible, perhaps because all treated and untreated areas are similar 

(e.g., flat, remote, in a single ecoregion, etc.), the broad evaluation approach described in this 

paper may simply not be feasible. 
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7.5. Measuring and Correcting for Spillovers 

Studies have used a variety of strategies to measure or control for spatial spillovers (Tables 1-3, 

column 5). The most common approach is to use matching to measure spillovers (Andam et al., 

2008; Blackman et al., 2011; Joppa and Pfaff, 2010a; Nelson and Chomitz, 2011; Alix-Garcia et 

al. Frothcoming; Gaveau et al., 2009). Plots in a buffer zone (typically 10km wide) outside of 

policy areas (typically protected areas) are designated as treatment plots. Spillovers are measured 

by comparing outcomes for these treated plots with outcomes for matched control plots outside 

both the policy and buffer areas. A positive and significant treatment effect (i.e., the average 

outcome on the treated plots minus the average outcome on the control plots) indicates that the 

policy has positive spillovers and a negative and significant treatment effect indicates the 

opposite. In either case, these effects must be taken into account in assessing the policy’s net 

effect. 

Several studies that use regression models rely on spatial lag variables—typically mean 

slope or elevation on neighboring land units—to control for spillovers (Müller and Monroe, 

2005; Nelson et al., 2001; Cropper et al., 2001). These variables are analogues to temporal lags 

in time series models. They purport to pick up the effect that land use on one plot has on 

neighboring plots. Although this approach may help to control for spillovers, its ability to 

accurately measure them is dubious due to endogeneity (Robalino et al., 2006).  

In addition to these two common approaches, several studies use ad hoc strategies to 

control for spillovers. A study that relies on regression analysis uses latitude and longitude fixed 

effects (Nelson et al., 2001); one bootstraps to correct standard errors potentially biased by 

spatial spillovers (Chomitz and Gray, 1996); one increases the size of the sampling grid to reduce 

spillovers (Mertens et al., 2002); one tests for spillovers and finds none (Mertens et al.,  2004); 

and one that relies on covariate matching matches on spatial lag variables (Honey-Roses et al., 

2011).  

7.6. Empirical Strategy 

The choice among different empirical strategies briefly described above is the topic of a 

literature, and summarizing it is beyond the scope of this paper. That said, we make three quick 

points. First, to ensure robustness, it is generally advisable to use, and report results from, a 

variety of methods for estimating treatment effects. Indeed, this is the standard approach in the 

literature (Andam et al., 2008; Blackman et al., 2011; Robalino et al., 2008; Sims, 2010).  
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Second, the approach chosen obviously depends on the policy being analyzed and the 

available data. IV approaches are feasible only when good instruments can be identified, and 

fixed effects approaches are feasible only when panel data are available.  

Third, matching approaches generate reliable results only if the matching analysis 

includes the important confounding factors that affect both selection into the treatment and the 

outcome, and if matches are “high quality”—that is, if treatment and matched control groups are, 

on average, indistinguishable after matching. A growing set of papers provides practical advice 

for ensuring matching quality (Caliendo and Kopeinig, 2008; D’Agostino, 1998; Ho et al., 2007; 

Morgan and Harding, 2006). In part, high quality matching will depend on meeting the criteria 

discussed in Section 7.4—defining a study area with significant heterogeneity.  

 
8. Examples 

This section describes in detail two recently published ex post analyses of forest conservation 

policies that use the methods discussed above.  

8.1. Protected Areas in Costa Rica 

Andam et al. (2008) examine the causal effect on deforestation of establishing protected areas in 

Costa Rica. As the authors point out, the country is widely viewed as a regional, if not global, 

leader in forest conservation policy. Roughly a third of its forest cover was cleared in the 1960s 

and 1970s for cattle ranching, coffee, and bananas. However, this trend slowed dramatically in 

subsequent decades. Proponents say that Costa Rica’s 150 protected areas, which cover almost 

half of the country’s remaining forests, deserve at least some of the credit. This assertion 

motivates the authors’ evaluation.  

The study uses three years of land-cover data: 1960, 1986, and 1997. The first land cover 

is derived from aerial photographs and the second two from Landsat images. The studies do not 

use land-cover data after 1997 to avoid conflating the effect of protected areas and the national 

PES program that was established in 1997.  

The study’s unit of analysis is a one-hectare (173m2) plot. Starting with all plots in the 

entire country that had forest cover in 1960, the authors draw a random sample of 20,000. After 

eliminating plots in wetlands and indigenous reserves (which are governed differently than 

protected areas), as well as plots with data problems (e.g., cloud cover), they arrive at a national 

sample of 15,283 plots.  
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Of these 15,283 plots, 2,711 are located in one of the country’s 150 protected areas, and 

12,572 are located in areas that have never been legally protected. Hence, the treatment group 

comprises 2,711 plots and control plots are drawn from the remaining 15,283 plots. 

The outcome variable is a dichotomous dummy that indicates whether deforestation 

occurred during a defined outcome period that depends on the vintage of the protected area. The 

study splits the sample of protected areas into two subsamples: those created before 1979 and 

those created between 1979 and 1996. For protected areas in the first subsample, the outcome 

period is 1960–1997 and the authors use only treatment and control plots that were forested in 

1960. For protected areas in the second subsample, the study period is 1986–1997 and the 

authors use only plots that were forested in 1986. Hence, for each subsample, all plots used in the 

analysis were forested at the beginning of the outcome period, and the treatment effect depends 

on the relative rate of clearing on treatment versus control plots. 

The study uses four sets of control variables. The first is land-use capacity, a categorical 

variable based on climate, soil type, and slope. The remaining variables are distances, 

specifically distances to the nearest cleared plot, to roads, and to large cities. (The authors also 

experimented with additional plot characteristics, including distances to railroads and rivers, 

population density, educational levels, immigration, and fuelwood use).  

The study uses matching to control for the nonrandom siting of protected areas. 

Specifically, it uses 1-to-2 covariate matching based on Mahalanobis distance, both with and 

without a caliper. A caliper defines a criterion for judging the quality of the matches. Treated 

plots for which a match that meets this criterion cannot be found are eliminated from the sample. 

For the sake of comparison, the study reports results from three “naïve” estimators likely to 

generate biased results: the difference between the average deforestation rate inside protected 

areas and outside (i.e., all unmatched control plots are used to estimate the counterfactual); the 

difference between the average deforestation rate inside protected areas and in a 10km buffer 

area outside (i.e., unmatched control plots in the buffer area are used to estimate the 

counterfactual); and the difference between the average deforestation rate inside protected areas 

and in a 10km buffer area outside without first dropping plots cleared at the beginning of the 

outcome period. The study uses a Rosenbaum bounds procedure to test the sensitivity of the 

results to influence of unobserved variables that affect the decision to protect certain areas and 

not others, and deforestation.  
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Finally, to determine whether protected areas caused positive or negative spillovers in 

adjacent areas, the study compares rates of deforestation in a 10km buffer area around protected 

areas with deforestation on a matched sample of unprotected areas outside the buffer zones. 

Again, 1-to-2 covariate matching using Mahalanobis distance, both with and without calipers, is 

used to pair treatment and control observations.  

Figure 2 presents the study’s findings for the subsample of protected areas created before 

1997. The naïve estimators that use questionable methods to generate a counterfactual suggest 

that protected areas created before 1979 were very effective: they reduced deforestation by 26-51 

percentage points. By contrast, the two matching estimators suggest that protected areas were 

much less effective: they reduced deforestation by only 7–9 percentage points. All five treatment 

effects are statistically significant. The Rosenbaum bounds test indicate that the two matching 

results are robust to bias from unobserved factors. Hence, these results clearly illustrate that the 

conventional methods of generating counterfactuals (discussed in Section 5.1) can result in 

overly optimistic evaluations of the effectiveness of conservation policies. 

 

Figure 2. Estimates of Pre-1979 Costa Rican Protected Areas’  
Causal Effects on Deforestation Using Five Estimators 

 

Source: Andam et al., 2008 
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8.2. Protected Areas in Thailand 

Sims (2010) examines the causal effect on deforestation (and local socioeconomic conditions, in 

which we are not interested here) of establishing protected areas in northern Thailand, which has 

88 protected areas and the majority of the country’s protected forests. The study uses land-cover 

data from five years—1967, 1973, 1985, 1992, and 2000—to create a panel covering four 

periods. Land-cover maps from the last four years are derived from Landsat images and have a 

resolution of 30m2 to 60m2.  

In contrast to Andam et al. (2008), who use plots as a unit of analysis, a dichotomous 

variable to measure outcomes (forested versus not forested), and matching to control for 

nonrandom siting, Sims uses an administrative district as the unit of analysis, a continuous 

variable to measure outcomes, and regression analysis with fixed effects and instrumental 

variables to control for nonrandom siting. Sims’s unit of analysis is a Thai “locality,” with an 

average size of 82km2 and an average population of 5,000. She uses all 4,113 localities in the 

study area in the analysis.  

Sims’s outcome variable is the percentage of the locality cleared in a period defined by 

the intervals between her five land covers. The treatment is the percentage of the locality that is 

protected in a given period.  

The study uses ordinary least squares regressions along with fixed effects and 

instrumental variables to measure the effect of protected areas on deforestation. The principal 

regression uses the panel data along with locality fixed effects to control for the nonrandom 

siting of protected areas. The model is specified as  

yijt = γxijt + αi +βjt + εijt 

where 
 

i is a locality index; 
j is a district index (districts are the administrative unit above locality); 
t is a period index; 
yijt is the percentage forest cover in locality i, district j, period t; 
xijt is the percentage in protected area in locality i, district j, period t; 
γ is parameter; 
αi is a locality fixed effect; 
βjt is year/district fixed effect; and 
εijt is random error term 
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As a robustness check, the model is estimated for the full sample of 4,113 localities and 

two subsamples—(i) all localities with more than 10 percent forest cover in the initial baseline 

year (1967), and (ii) all localities with more than 50 percent forest cover in this year—the idea 

being that localities with higher initial percentage of forest cover may serve as a better indicator 

of the effectiveness of protection.  

In addition to this fixed effects panel regression, the study also estimates a cross-sectional 

regression with an IV to control for nonrandom siting of protected areas. The instrument is a 

dummy variable that indicates whether the locality intersects a major tributary river. As per 

Cropper et al. (2001), the logic is that localities in important watersheds are more likely to have 

been selected for protection by policymakers seeking to preserve hydrological services. The 

assumption is that proximity to a major tributary river affects which localities were protected but 

does not have an important independent effect on the probability of clearing. The IV regression 

is specified as 

yij = γݔොij + ψzi + βj + εij 

 where 

i is a locality index; 
j 
y
xොij is an instrument for the percentage in protected area in locality i, district j; 

is a district index (districts are the administrative unit above locality); 
ijt is the percentage forest cover in locality i, district j; 

z is a vector of locality characteristics; 
γ is parameter; 
ψ is parameter; 
βj is a district fixed effect; and 

 ε is random error term 
 

The vector of locality characteristics includes average slope, maximum slope, average 

elevation, maximum elevation, distance to the Thai border, distance to the nearest large river, 

distance to the nearest mineral deposits, ecoregion, average temperature, average rainfall, 

distance to the nearest major railroad line, an upper watershed dichotomous dummy, a touristic 

waterfall dichotomous dummy, the historical forest cover, historical distances to major and 

minor roads, distance to the nearest major city, and irrigation potential. Finally, for the sake of 

comparison, the study includes this same regression without an instrument for the treatment 

variable. The study does not attempt to measure or control for spillovers.  
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Figure 3 presents the major results, which indicate that protected areas have significant 

effects on deforestation in northern Thailand. The treatment effects estimates range from 7 to 19 

percentage points. Among the panel effects models, estimated effects are larger for models that 

include localities with a relatively small percentage of forest cover in the initial period. Among 

the cross-sectional models, the one that uses an IV approach to control for nonrandom siting 

generates a smaller treatment effect, as would be expected if protected areas are sited in places 

with relatively low deforestation rates.  

Figure 3. Estimates of Protected Areas’ Causal Effects on  
Deforestation in Northern Thailand 

 
FE = fixed effects; IV = instrumental variable 
Source: Sims , 2010 

9. Planning Ahead 

This report focuses on ex-post evaluation of forest conservation policies that already have been 

implemented. However, planning an evaluation in concert with implementation can improve its 

effectiveness and efficiency. This section provides brief recommendations for such planning.  

First, as noted in Section 7.1, it is important to identify and collect data on factors 

affecting land cover change in the study area and factors affecting the siting of the conservation 

policy, both of which should be treated as confounders in the statistical analysis. Anticipating the 
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benefits of identifying and collecting information on siting before the conservation policy is 

implemented creates an opportunity to directly observe the siting decision making process. 

It also creates an opportunity to influence this process. Although outside of this paper’s 

focus on  quasi-experimental methods that correct for selection bias after it occurs, it bears 

mentioning that planning an evaluation in concert with the implementation of the conservation 

policy makes possible avoiding such bias before it occurs by randomly assigning the 

conservation policy across space. For example, a payments for ecosystem services or land titling 

project might be rolled out so that it affects some randomly selected communities before others. 

Given sufficient lags in implementation, the areas affected later can serve as controls for areas 

affected earlier. In principle, this type of randomization greatly simplifies and strengthens impact 

evaluation (Ferraro, 2009).  

Third, advance planning creates opportunities to ensure that geolocator information are 

collected for treatment and control areas. The former data are, of course, a prerequisite for spatial 

evaluation. While not absolutely necessary, the latter data can be extremely useful. For example, 

for an evaluation of payments for ecological services or land titling that targets farms and 

communities, such data would facilitate a farm- or community-level evaluation instead of a plot-

level evaluation, with the attendant benefits described in Section 7.2.  

Fourth, a related opportunity is collecting geolocator information for areas that applied 

for but were ultimately not included in the conservation program, which can be used as controls. 

For example, in an evaluation of the deforestation effects of Mexico’s national payments for 

hydrological services program, Alix Garcia et al. (Forthcoming) uses as controls communities 

that unsuccessfully applied to participate.  

Fifth, advance planning makes it possible to ensure up-to-date land cover change data are 

readily available by commissioning experts to create them from raw remote sensing data before 

the evaluation begins. Along with geolocator information for policy areas, land cover change 

usually are the lynchpin of spatial evaluation, but unfortunately, are publicly available only with 

a significant lag. In part, that is because creating high-resolution maps from raw remote sensing 

data is a time-consuming process that generally entails checking predicted land use 

classifications against first-hand field observations. In principle, such groundtruthing can be 

incorporated into policy implementation. Commissioning land cover change maps ahead of time 

also makes possible tailoring them to the evaluation. For example, an evaluation of a project 
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aimed at stemming selective logging as well as clear cutting could commissions high resolution 

maps needed to accurately measure this activity.  

Finally, although again beyond this paper’s focus on  analysis using secondary data, 

advance planning makes it easier to combine secondary data on confounding factors with 

primary survey or field data collected in the course of implementation on, for example, land 

manager characteristics (e.g., Arriagada et al. Forthcoming).  

10. Conclusion 

This paper provides an introduction to a relatively low cost method for ex post analysis of forest 

conservation policies, based on remote sensing data. We have described the defining features of 

this approach, catalogued and briefly reviewed the studies that use it, discussed the requisite 

data, explained the principal challenges to using this method and the empirical strategies to 

overcome them, provided some practical guidance on modeling choices, and described in detail 

two recent case studies. For uninitiated readers interested in applying these methods, the 

recommended next step is to read those studies listed in Tables 1-3 that appear most relevant to 

their purpose. 

Looking ahead, there is tremendous scope for further applications of this approach to 

evaluating forest conservation policies. As Tables 1-3 indicate, only a few studies examining a 

few policies in a few countries have appeared. Prospects for further analysis are particularly 

bright in light of the widening availability of high-resolution remote sensing data and 

corresponding rapid advances in geospatial analysis; these changes will soon make high-

resolution panel data on land-cover change available for entire continents (Fagan and DeFries, 

2009).   
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